On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs

For a (molecular) graph <i>G</i>, the extended adjacency index <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> &l...

Full description

Bibliographic Details
Main Authors: Bin Yang, Vinayak V. Manjalapur, Sharanu P. Sajjan, Madhura M. Mathai, Jia-Bao Liu
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/7/652
id doaj-0bd10fb38d514d0faa0fdb27224e3043
record_format Article
spelling doaj-0bd10fb38d514d0faa0fdb27224e30432020-11-25T01:13:26ZengMDPI AGMathematics2227-73902019-07-017765210.3390/math7070652math7070652On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic GraphsBin Yang0Vinayak V. Manjalapur1Sharanu P. Sajjan2Madhura M. Mathai3Jia-Bao Liu4Department of Computer Science and Technology, Hefei University, Hefei 230601, ChinaDepartment of Mathematics, KLE Society’s, Basavaprabhu Kore Arts, Science and Commerce College, Chikodi 591201, Karnataka, IndiaDepartment of Computer Science, Government First Grade College for Women, Jamkhandi 587301, IndiaDepartment of Mathematics, KLE Society’s, Raja Lakhamagouda Science Institute, Belgaum 590001, Karnataka, IndiaSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaFor a (molecular) graph <i>G</i>, the extended adjacency index <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is defined as Equation (1). In this paper we introduce some graph transformations which increase or decrease the extended adjacency (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> </mrow> </semantics> </math> </inline-formula>) index. Also, we obtain the extremal acyclic, unicyclic and bicyclic graphs with minimum and maximum of the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> </mrow> </semantics> </math> </inline-formula> index by a unified method, respectively.https://www.mdpi.com/2227-7390/7/7/652degree of vertexextended adjacency index
collection DOAJ
language English
format Article
sources DOAJ
author Bin Yang
Vinayak V. Manjalapur
Sharanu P. Sajjan
Madhura M. Mathai
Jia-Bao Liu
spellingShingle Bin Yang
Vinayak V. Manjalapur
Sharanu P. Sajjan
Madhura M. Mathai
Jia-Bao Liu
On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs
Mathematics
degree of vertex
extended adjacency index
author_facet Bin Yang
Vinayak V. Manjalapur
Sharanu P. Sajjan
Madhura M. Mathai
Jia-Bao Liu
author_sort Bin Yang
title On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs
title_short On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs
title_full On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs
title_fullStr On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs
title_full_unstemmed On Extended Adjacency Index with Respect to Acyclic, Unicyclic and Bicyclic Graphs
title_sort on extended adjacency index with respect to acyclic, unicyclic and bicyclic graphs
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-07-01
description For a (molecular) graph <i>G</i>, the extended adjacency index <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is defined as Equation (1). In this paper we introduce some graph transformations which increase or decrease the extended adjacency (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> </mrow> </semantics> </math> </inline-formula>) index. Also, we obtain the extremal acyclic, unicyclic and bicyclic graphs with minimum and maximum of the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>A</mi> </mrow> </semantics> </math> </inline-formula> index by a unified method, respectively.
topic degree of vertex
extended adjacency index
url https://www.mdpi.com/2227-7390/7/7/652
work_keys_str_mv AT binyang onextendedadjacencyindexwithrespecttoacyclicunicyclicandbicyclicgraphs
AT vinayakvmanjalapur onextendedadjacencyindexwithrespecttoacyclicunicyclicandbicyclicgraphs
AT sharanupsajjan onextendedadjacencyindexwithrespecttoacyclicunicyclicandbicyclicgraphs
AT madhurammathai onextendedadjacencyindexwithrespecttoacyclicunicyclicandbicyclicgraphs
AT jiabaoliu onextendedadjacencyindexwithrespecttoacyclicunicyclicandbicyclicgraphs
_version_ 1725162293493235712