Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity
We present measurements of dark currents and x rays in a six cell 805 MHz cavity, taken as part of an rf development program for muon cooling, which requires high power, high stored energy, low frequency cavities operating in a strong magnetic field. We have done the first systematic study of the be...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2003-07-01
|
Series: | Physical Review Special Topics. Accelerators and Beams |
Online Access: | http://doi.org/10.1103/PhysRevSTAB.6.072001 |
id |
doaj-0bc51843082248c69839e5f059da583c |
---|---|
record_format |
Article |
spelling |
doaj-0bc51843082248c69839e5f059da583c2020-11-25T00:40:29ZengAmerican Physical SocietyPhysical Review Special Topics. Accelerators and Beams1098-44022003-07-016707200110.1103/PhysRevSTAB.6.072001Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavityJ. NoremV. WuA. MorettiM. PopovicZ. QianL. DucasY. TorunN. SolomeyWe present measurements of dark currents and x rays in a six cell 805 MHz cavity, taken as part of an rf development program for muon cooling, which requires high power, high stored energy, low frequency cavities operating in a strong magnetic field. We have done the first systematic study of the behavior of high power rf in a strong (2.5–4 T) magnetic field. Our measurements extend over a very large dynamic range in current and provide good fits to the Fowler-Nordheim field emission model assuming mechanical structures produce field enhancements at the surface. The locally enhanced field intensities we derive at the tips of these emitters are very large, (∼10 GV/m), and should produce tensile stresses comparable to the tensile strength of the copper cavity walls and should be capable of causing breakdown events. We also compare our data with estimates of tensile stresses from a variety of accelerating structures. Preliminary studies of the internal surface of the cavity and window are presented, which show splashes of copper with many sharp cone shaped protrusions and wires which can explain the experimentally measured field enhancements. We discuss a “cold copper” breakdown mechanism and briefly review alternatives. We also discuss a number of effects due to the 2.5 T solenoidal fields on the cavity such as altered field emission due to mechanical deformation of emitters, and dark current ring beams, which are produced from the irises by E×B drifts during the nonrelativistic part of the acceleration process.http://doi.org/10.1103/PhysRevSTAB.6.072001 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Norem V. Wu A. Moretti M. Popovic Z. Qian L. Ducas Y. Torun N. Solomey |
spellingShingle |
J. Norem V. Wu A. Moretti M. Popovic Z. Qian L. Ducas Y. Torun N. Solomey Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity Physical Review Special Topics. Accelerators and Beams |
author_facet |
J. Norem V. Wu A. Moretti M. Popovic Z. Qian L. Ducas Y. Torun N. Solomey |
author_sort |
J. Norem |
title |
Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity |
title_short |
Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity |
title_full |
Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity |
title_fullStr |
Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity |
title_full_unstemmed |
Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity |
title_sort |
dark current, breakdown, and magnetic field effects in a multicell, 805 mhz cavity |
publisher |
American Physical Society |
series |
Physical Review Special Topics. Accelerators and Beams |
issn |
1098-4402 |
publishDate |
2003-07-01 |
description |
We present measurements of dark currents and x rays in a six cell 805 MHz cavity, taken as part of an rf development program for muon cooling, which requires high power, high stored energy, low frequency cavities operating in a strong magnetic field. We have done the first systematic study of the behavior of high power rf in a strong (2.5–4 T) magnetic field. Our measurements extend over a very large dynamic range in current and provide good fits to the Fowler-Nordheim field emission model assuming mechanical structures produce field enhancements at the surface. The locally enhanced field intensities we derive at the tips of these emitters are very large, (∼10 GV/m), and should produce tensile stresses comparable to the tensile strength of the copper cavity walls and should be capable of causing breakdown events. We also compare our data with estimates of tensile stresses from a variety of accelerating structures. Preliminary studies of the internal surface of the cavity and window are presented, which show splashes of copper with many sharp cone shaped protrusions and wires which can explain the experimentally measured field enhancements. We discuss a “cold copper” breakdown mechanism and briefly review alternatives. We also discuss a number of effects due to the 2.5 T solenoidal fields on the cavity such as altered field emission due to mechanical deformation of emitters, and dark current ring beams, which are produced from the irises by E×B drifts during the nonrelativistic part of the acceleration process. |
url |
http://doi.org/10.1103/PhysRevSTAB.6.072001 |
work_keys_str_mv |
AT jnorem darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT vwu darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT amoretti darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT mpopovic darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT zqian darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT lducas darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT ytorun darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity AT nsolomey darkcurrentbreakdownandmagneticfieldeffectsinamulticell805mhzcavity |
_version_ |
1725289778540183552 |