Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

<p>Abstract</p> <p>Background</p> <p>Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protr...

Full description

Bibliographic Details
Main Authors: Carlstrom Lucas P, Hines Jacob H, Henle Steven J, Henley John R
Format: Article
Language:English
Published: BMC 2011-11-01
Series:BMC Biology
Online Access:http://www.biomedcentral.com/1741-7007/9/82
id doaj-0baf3c5cb12240eda2dacdfca88891df
record_format Article
spelling doaj-0baf3c5cb12240eda2dacdfca88891df2020-11-24T21:44:38ZengBMCBMC Biology1741-70072011-11-01918210.1186/1741-7007-9-82Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growthCarlstrom Lucas PHines Jacob HHenle Steven JHenley John R<p>Abstract</p> <p>Background</p> <p>Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG) triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions.</p> <p>Results</p> <p>We report that brain-derived neurotropic factor (BDNF) positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of <it>Xenopus </it>spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF.</p> <p>Conclusions</p> <p>Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block the negative remodeling and growth inhibitory effects of MAG. Such bidirectional remodeling may allow the growth cone to rapidly adjust adhesiveness to the extracellular matrix as a general mechanism for governing axon extension. Techniques for manipulating integrin internalization and activation state may be important for overcoming local inhibitory factors after traumatic injury or neurodegenerative disease to enhance regenerative nerve growth.</p> http://www.biomedcentral.com/1741-7007/9/82
collection DOAJ
language English
format Article
sources DOAJ
author Carlstrom Lucas P
Hines Jacob H
Henle Steven J
Henley John R
spellingShingle Carlstrom Lucas P
Hines Jacob H
Henle Steven J
Henley John R
Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
BMC Biology
author_facet Carlstrom Lucas P
Hines Jacob H
Henle Steven J
Henley John R
author_sort Carlstrom Lucas P
title Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
title_short Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
title_full Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
title_fullStr Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
title_full_unstemmed Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
title_sort bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth
publisher BMC
series BMC Biology
issn 1741-7007
publishDate 2011-11-01
description <p>Abstract</p> <p>Background</p> <p>Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG) triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions.</p> <p>Results</p> <p>We report that brain-derived neurotropic factor (BDNF) positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of <it>Xenopus </it>spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF.</p> <p>Conclusions</p> <p>Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block the negative remodeling and growth inhibitory effects of MAG. Such bidirectional remodeling may allow the growth cone to rapidly adjust adhesiveness to the extracellular matrix as a general mechanism for governing axon extension. Techniques for manipulating integrin internalization and activation state may be important for overcoming local inhibitory factors after traumatic injury or neurodegenerative disease to enhance regenerative nerve growth.</p>
url http://www.biomedcentral.com/1741-7007/9/82
work_keys_str_mv AT carlstromlucasp bidirectionalremodelingofb1integrinadhesionsduringchemotropicregulationofnervegrowth
AT hinesjacobh bidirectionalremodelingofb1integrinadhesionsduringchemotropicregulationofnervegrowth
AT henlestevenj bidirectionalremodelingofb1integrinadhesionsduringchemotropicregulationofnervegrowth
AT henleyjohnr bidirectionalremodelingofb1integrinadhesionsduringchemotropicregulationofnervegrowth
_version_ 1725908988863709184