Intersection of Ideals in a Polynomial Ring over a Dual Valuation Domain

Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals...

Full description

Bibliographic Details
Main Authors: Regis F. Babindamana, Andre S. E. Mialebama Bouesso
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2018/9316901
Description
Summary:Let V be a valuation domain and let A=V+εV be a dual valuation domain. We propose a method for computing a strong Gröbner basis in R=A[x1,…,xn]; given polynomials f1,…,fs∈R, a method for computing a generating set for Syz(f1,…,fs)={(h1,…,hs)∈Rs∣h1f1+⋯+hsfs=0} is given; and, finally, given two ideals I=〈f1,…,fs〉 and J=〈g1,…,gr〉 of R, we propose an algorithm for computing a generating set for I∩J.
ISSN:2314-4629
2314-4785