Improved Catalytic Propylene Epoxidation for Extruded Micrometer TS-1: Introducing Mesopores and Macropores Insides the Crystals

In the paper, mesopores and macropores are introduced inside the crystals of micrometer microporous titanium silicate-1 (TS-1) to solve the problem of active site coverage and mass transfer during extrusion. Hierarchically porous titanium silicalite-1 (HPTS-1) was acquired by treating micrometer mic...

Full description

Bibliographic Details
Main Authors: Jiangbo Li, Feifei Zhang, Lukuan Zong, Xiangyu Wang, Huijuan Wei
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/1/113
Description
Summary:In the paper, mesopores and macropores are introduced inside the crystals of micrometer microporous titanium silicate-1 (TS-1) to solve the problem of active site coverage and mass transfer during extrusion. Hierarchically porous titanium silicalite-1 (HPTS-1) was acquired by treating micrometer microporous TS-1 with TPABr and ethanolamine. Extruded HPTS-1 maintained greatly superior catalytic performance and possessed high mechanical strength. Characterization results showed that extruded HPTS-1 possessed macroporous, mesoporous structure inside the crystals. These abundant pores are not only beneficial for diffusion reactants, but also make Ti-peroxo species (η<sup>2</sup>), active oxidation sites in TS-1/H<sub>2</sub>O<sub>2</sub> system become much more reactive. The formula of extruded HPTS-1 was optimized using an orthogonal experiment. The maximum strength of extruded HPTS-1 was up to 200 N/cm, the highest yield of propylene oxide was 92.5% and the specific rate was up to 41.9%. The research provides a scientific basis for producing extruded catalysts with excellent catalytic performance and high mechanical strength in industrial applications.
ISSN:2073-4344