Histone chaperone exploits intrinsic disorder to switch acetylation specificity

Histone chaperones have been shown to control the activity and specificity of histone-modifying enzymes. Here the authors establish a structural model of the acetyltransferase Rtt109 in complex with Asf1 and Vps75 and the histone dimer H3:H4, finding that Vps75 promotes K9-acetylation by engaging th...

Full description

Bibliographic Details
Main Authors: Nataliya Danilenko, Lukas Lercher, John Kirkpatrick, Frank Gabel, Luca Codutti, Teresa Carlomagno
Format: Article
Language:English
Published: Nature Publishing Group 2019-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-11410-7
id doaj-0b7982cadac74428b575ac9e21c9f021
record_format Article
spelling doaj-0b7982cadac74428b575ac9e21c9f0212021-05-11T12:13:52ZengNature Publishing GroupNature Communications2041-17232019-08-0110111110.1038/s41467-019-11410-7Histone chaperone exploits intrinsic disorder to switch acetylation specificityNataliya Danilenko0Lukas Lercher1John Kirkpatrick2Frank Gabel3Luca Codutti4Teresa Carlomagno5Leibniz University Hannover, Centre for Biomolecular Drug ResearchLeibniz University Hannover, Centre for Biomolecular Drug ResearchLeibniz University Hannover, Centre for Biomolecular Drug ResearchUniversity Grenoble Alpes, CEA, CNRS IBSLeibniz University Hannover, Centre for Biomolecular Drug ResearchLeibniz University Hannover, Centre for Biomolecular Drug ResearchHistone chaperones have been shown to control the activity and specificity of histone-modifying enzymes. Here the authors establish a structural model of the acetyltransferase Rtt109 in complex with Asf1 and Vps75 and the histone dimer H3:H4, finding that Vps75 promotes K9-acetylation by engaging the H3 N-terminal tail in fuzzy electrostatic interactions with its disordered C-terminal domain.https://doi.org/10.1038/s41467-019-11410-7
collection DOAJ
language English
format Article
sources DOAJ
author Nataliya Danilenko
Lukas Lercher
John Kirkpatrick
Frank Gabel
Luca Codutti
Teresa Carlomagno
spellingShingle Nataliya Danilenko
Lukas Lercher
John Kirkpatrick
Frank Gabel
Luca Codutti
Teresa Carlomagno
Histone chaperone exploits intrinsic disorder to switch acetylation specificity
Nature Communications
author_facet Nataliya Danilenko
Lukas Lercher
John Kirkpatrick
Frank Gabel
Luca Codutti
Teresa Carlomagno
author_sort Nataliya Danilenko
title Histone chaperone exploits intrinsic disorder to switch acetylation specificity
title_short Histone chaperone exploits intrinsic disorder to switch acetylation specificity
title_full Histone chaperone exploits intrinsic disorder to switch acetylation specificity
title_fullStr Histone chaperone exploits intrinsic disorder to switch acetylation specificity
title_full_unstemmed Histone chaperone exploits intrinsic disorder to switch acetylation specificity
title_sort histone chaperone exploits intrinsic disorder to switch acetylation specificity
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2019-08-01
description Histone chaperones have been shown to control the activity and specificity of histone-modifying enzymes. Here the authors establish a structural model of the acetyltransferase Rtt109 in complex with Asf1 and Vps75 and the histone dimer H3:H4, finding that Vps75 promotes K9-acetylation by engaging the H3 N-terminal tail in fuzzy electrostatic interactions with its disordered C-terminal domain.
url https://doi.org/10.1038/s41467-019-11410-7
work_keys_str_mv AT nataliyadanilenko histonechaperoneexploitsintrinsicdisordertoswitchacetylationspecificity
AT lukaslercher histonechaperoneexploitsintrinsicdisordertoswitchacetylationspecificity
AT johnkirkpatrick histonechaperoneexploitsintrinsicdisordertoswitchacetylationspecificity
AT frankgabel histonechaperoneexploitsintrinsicdisordertoswitchacetylationspecificity
AT lucacodutti histonechaperoneexploitsintrinsicdisordertoswitchacetylationspecificity
AT teresacarlomagno histonechaperoneexploitsintrinsicdisordertoswitchacetylationspecificity
_version_ 1721445117204627456