Machine learning techniques to select variable stars

In order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical compu...

Full description

Bibliographic Details
Main Authors: García-Varela Alejandro, Pérez Muriel, Sabogal Beatriz, Quiroz Adolfo
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201715203011
id doaj-0b60a19809524e9db8b041735cf1598a
record_format Article
spelling doaj-0b60a19809524e9db8b041735cf1598a2021-08-02T09:35:19ZengEDP SciencesEPJ Web of Conferences2100-014X2017-01-011520301110.1051/epjconf/201715203011epjconf_puls2017_03011Machine learning techniques to select variable starsGarcía-Varela Alejandro0Pérez MurielSabogal Beatriz1Quiroz Adolfo2Universidad de los Andes, Departamento de FísicaUniversidad de los Andes, Departamento de FísicaUniversidad de los Andes, Departamento de MatemáticasIn order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical computing environment. We find that random forests is the most successful method to select variables.https://doi.org/10.1051/epjconf/201715203011
collection DOAJ
language English
format Article
sources DOAJ
author García-Varela Alejandro
Pérez Muriel
Sabogal Beatriz
Quiroz Adolfo
spellingShingle García-Varela Alejandro
Pérez Muriel
Sabogal Beatriz
Quiroz Adolfo
Machine learning techniques to select variable stars
EPJ Web of Conferences
author_facet García-Varela Alejandro
Pérez Muriel
Sabogal Beatriz
Quiroz Adolfo
author_sort García-Varela Alejandro
title Machine learning techniques to select variable stars
title_short Machine learning techniques to select variable stars
title_full Machine learning techniques to select variable stars
title_fullStr Machine learning techniques to select variable stars
title_full_unstemmed Machine learning techniques to select variable stars
title_sort machine learning techniques to select variable stars
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2017-01-01
description In order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical computing environment. We find that random forests is the most successful method to select variables.
url https://doi.org/10.1051/epjconf/201715203011
work_keys_str_mv AT garciavarelaalejandro machinelearningtechniquestoselectvariablestars
AT perezmuriel machinelearningtechniquestoselectvariablestars
AT sabogalbeatriz machinelearningtechniquestoselectvariablestars
AT quirozadolfo machinelearningtechniquestoselectvariablestars
_version_ 1721234738088247296