Machine learning techniques to select variable stars
In order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical compu...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2017-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://doi.org/10.1051/epjconf/201715203011 |
id |
doaj-0b60a19809524e9db8b041735cf1598a |
---|---|
record_format |
Article |
spelling |
doaj-0b60a19809524e9db8b041735cf1598a2021-08-02T09:35:19ZengEDP SciencesEPJ Web of Conferences2100-014X2017-01-011520301110.1051/epjconf/201715203011epjconf_puls2017_03011Machine learning techniques to select variable starsGarcía-Varela Alejandro0Pérez MurielSabogal Beatriz1Quiroz Adolfo2Universidad de los Andes, Departamento de FísicaUniversidad de los Andes, Departamento de FísicaUniversidad de los Andes, Departamento de MatemáticasIn order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical computing environment. We find that random forests is the most successful method to select variables.https://doi.org/10.1051/epjconf/201715203011 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
García-Varela Alejandro Pérez Muriel Sabogal Beatriz Quiroz Adolfo |
spellingShingle |
García-Varela Alejandro Pérez Muriel Sabogal Beatriz Quiroz Adolfo Machine learning techniques to select variable stars EPJ Web of Conferences |
author_facet |
García-Varela Alejandro Pérez Muriel Sabogal Beatriz Quiroz Adolfo |
author_sort |
García-Varela Alejandro |
title |
Machine learning techniques to select variable stars |
title_short |
Machine learning techniques to select variable stars |
title_full |
Machine learning techniques to select variable stars |
title_fullStr |
Machine learning techniques to select variable stars |
title_full_unstemmed |
Machine learning techniques to select variable stars |
title_sort |
machine learning techniques to select variable stars |
publisher |
EDP Sciences |
series |
EPJ Web of Conferences |
issn |
2100-014X |
publishDate |
2017-01-01 |
description |
In order to perform a supervised classification of variable stars, we propose and evaluate a set of six features extracted from the magnitude density of the light curves. They are used to train automatic classification systems using state-of-the-art classifiers implemented in the R statistical computing environment. We find that random forests is the most successful method to select variables. |
url |
https://doi.org/10.1051/epjconf/201715203011 |
work_keys_str_mv |
AT garciavarelaalejandro machinelearningtechniquestoselectvariablestars AT perezmuriel machinelearningtechniquestoselectvariablestars AT sabogalbeatriz machinelearningtechniquestoselectvariablestars AT quirozadolfo machinelearningtechniquestoselectvariablestars |
_version_ |
1721234738088247296 |