One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign

Let Ω be a bounded open interval, let p>1${p>1}$ and γ>0${\gamma>0}$, and let m:Ω→ℝ${m:\Omega\rightarrow\mathbb{R}}$ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form -(...

Full description

Bibliographic Details
Main Authors: Kaufmann Uriel, Medri Iván
Format: Article
Language:English
Published: De Gruyter 2016-08-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2015-0116
id doaj-0b24e21b77904a088826966036fbc1df
record_format Article
spelling doaj-0b24e21b77904a088826966036fbc1df2021-09-06T19:39:54ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2016-08-015325125910.1515/anona-2015-0116One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in signKaufmann Uriel0Medri Iván1FaMAF, Universidad Nacional de Córdoba, (5000) Córdoba, ArgentinaFaMAF, Universidad Nacional de Córdoba, (5000) Córdoba, ArgentinaLet Ω be a bounded open interval, let p>1${p>1}$ and γ>0${\gamma>0}$, and let m:Ω→ℝ${m:\Omega\rightarrow\mathbb{R}}$ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form -(|u′|p-2⁢u′)′=m⁢(x)⁢u-γ${-(|u^{\prime}|^{p-2}u^{\prime})^{\prime}=m(x)u^{-\gamma}}$ in Ω, u=0${u=0}$ on ∂⁡Ω${\partial\Omega}$. As a consequence we also derive existence results for other related nonlinearities.https://doi.org/10.1515/anona-2015-0116one-dimensional singular problemsindefinite nonlinearitiespositive solutions34b16 34b18 34b15 34c25
collection DOAJ
language English
format Article
sources DOAJ
author Kaufmann Uriel
Medri Iván
spellingShingle Kaufmann Uriel
Medri Iván
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
Advances in Nonlinear Analysis
one-dimensional singular problems
indefinite nonlinearities
positive solutions
34b16
34b18
34b15
34c25
author_facet Kaufmann Uriel
Medri Iván
author_sort Kaufmann Uriel
title One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_short One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_full One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_fullStr One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_full_unstemmed One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_sort one-dimensional singular problems involving the p-laplacian and nonlinearities indefinite in sign
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-9496
2191-950X
publishDate 2016-08-01
description Let Ω be a bounded open interval, let p>1${p>1}$ and γ>0${\gamma>0}$, and let m:Ω→ℝ${m:\Omega\rightarrow\mathbb{R}}$ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form -(|u′|p-2⁢u′)′=m⁢(x)⁢u-γ${-(|u^{\prime}|^{p-2}u^{\prime})^{\prime}=m(x)u^{-\gamma}}$ in Ω, u=0${u=0}$ on ∂⁡Ω${\partial\Omega}$. As a consequence we also derive existence results for other related nonlinearities.
topic one-dimensional singular problems
indefinite nonlinearities
positive solutions
34b16
34b18
34b15
34c25
url https://doi.org/10.1515/anona-2015-0116
work_keys_str_mv AT kaufmannuriel onedimensionalsingularproblemsinvolvingtheplaplacianandnonlinearitiesindefiniteinsign
AT medriivan onedimensionalsingularproblemsinvolvingtheplaplacianandnonlinearitiesindefiniteinsign
_version_ 1717769747711393792