One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
Let Ω be a bounded open interval, let p>1${p>1}$ and γ>0${\gamma>0}$, and let m:Ω→ℝ${m:\Omega\rightarrow\mathbb{R}}$ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form -(...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-08-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2015-0116 |
id |
doaj-0b24e21b77904a088826966036fbc1df |
---|---|
record_format |
Article |
spelling |
doaj-0b24e21b77904a088826966036fbc1df2021-09-06T19:39:54ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2016-08-015325125910.1515/anona-2015-0116One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in signKaufmann Uriel0Medri Iván1FaMAF, Universidad Nacional de Córdoba, (5000) Córdoba, ArgentinaFaMAF, Universidad Nacional de Córdoba, (5000) Córdoba, ArgentinaLet Ω be a bounded open interval, let p>1${p>1}$ and γ>0${\gamma>0}$, and let m:Ω→ℝ${m:\Omega\rightarrow\mathbb{R}}$ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form -(|u′|p-2u′)′=m(x)u-γ${-(|u^{\prime}|^{p-2}u^{\prime})^{\prime}=m(x)u^{-\gamma}}$ in Ω, u=0${u=0}$ on ∂Ω${\partial\Omega}$. As a consequence we also derive existence results for other related nonlinearities.https://doi.org/10.1515/anona-2015-0116one-dimensional singular problemsindefinite nonlinearitiespositive solutions34b16 34b18 34b15 34c25 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kaufmann Uriel Medri Iván |
spellingShingle |
Kaufmann Uriel Medri Iván One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign Advances in Nonlinear Analysis one-dimensional singular problems indefinite nonlinearities positive solutions 34b16 34b18 34b15 34c25 |
author_facet |
Kaufmann Uriel Medri Iván |
author_sort |
Kaufmann Uriel |
title |
One-dimensional singular problems involving the p-Laplacian and
nonlinearities indefinite in sign |
title_short |
One-dimensional singular problems involving the p-Laplacian and
nonlinearities indefinite in sign |
title_full |
One-dimensional singular problems involving the p-Laplacian and
nonlinearities indefinite in sign |
title_fullStr |
One-dimensional singular problems involving the p-Laplacian and
nonlinearities indefinite in sign |
title_full_unstemmed |
One-dimensional singular problems involving the p-Laplacian and
nonlinearities indefinite in sign |
title_sort |
one-dimensional singular problems involving the p-laplacian and
nonlinearities indefinite in sign |
publisher |
De Gruyter |
series |
Advances in Nonlinear Analysis |
issn |
2191-9496 2191-950X |
publishDate |
2016-08-01 |
description |
Let Ω be a bounded open interval, let
p>1${p>1}$ and γ>0${\gamma>0}$, and let
m:Ω→ℝ${m:\Omega\rightarrow\mathbb{R}}$ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form
-(|u′|p-2u′)′=m(x)u-γ${-(|u^{\prime}|^{p-2}u^{\prime})^{\prime}=m(x)u^{-\gamma}}$ in Ω,
u=0${u=0}$ on ∂Ω${\partial\Omega}$. As a consequence we also
derive existence results for other related nonlinearities. |
topic |
one-dimensional singular problems indefinite nonlinearities positive solutions 34b16 34b18 34b15 34c25 |
url |
https://doi.org/10.1515/anona-2015-0116 |
work_keys_str_mv |
AT kaufmannuriel onedimensionalsingularproblemsinvolvingtheplaplacianandnonlinearitiesindefiniteinsign AT medriivan onedimensionalsingularproblemsinvolvingtheplaplacianandnonlinearitiesindefiniteinsign |
_version_ |
1717769747711393792 |