Na-feldspar: temperature, pressure and the state of order
<p>In feldspars, mean tetrahedral T–O bond lengths (T <span class="inline-formula">=</span> Al,Si) are the standard measure of the tetrahedral Al content. However, for a sophisticated assessment of the Al,Si distribution, factors have to be accounted for (1) that cause i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-07-01
|
Series: | European Journal of Mineralogy |
Online Access: | https://ejm.copernicus.org/articles/32/427/2020/ejm-32-427-2020.pdf |
Summary: | <p>In feldspars, mean tetrahedral T–O bond lengths (T <span class="inline-formula">=</span> Al,Si) are the
standard measure of the tetrahedral Al content. However, for a sophisticated
assessment of the Al,Si distribution, factors have to be accounted for (1) that cause individual T–O bond lengths to deviate from their tetrahedral
means and (2) that cause mean tetrahedral lengths to deviate from values specified by the Al content. We investigated low albite, <span class="inline-formula">Na[AlSi<sub>3</sub>O<sub>8</sub>]</span>, from six
X-ray crystal structure refinements available in the literature. The Al,Si
distribution of low albite is fully ordered so that Al,Si–O bond length
variations result only from bond perturbing factors. For the
<i>intra</i>-tetrahedral variation <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mtext>T–O</mtext><mo>≡</mo><mtext>T–O</mtext><mo>-</mo><mo>〈</mo><mtext>T–O</mtext><mo>〉</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="103pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="de4a18840c900a64a92c51c9eeb720fa"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-427-2020-ie00001.svg" width="103pt" height="13pt" src="ejm-32-427-2020-ie00001.png"/></svg:svg></span></span>, only two factors turned out to be
effective: (1) the sum of bond critical point electron densities in the Na–O
and T–O bonds neighbouring the T–O bond under consideration and (2) the
fractional <span class="inline-formula"><i>s</i></span>-bond character of the bridging oxygen atom. This model resulted
in a root mean square (rms) value for <span class="inline-formula">ΔT–O</span> of only 0.002
Å, comparable to the estimated standard deviations (esd's) routinely quoted in X-ray and neutron
structure refinements. In the second step, the <i>inter</i>-tetrahedral differences
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>〈</mo><mtext>T–O</mtext><mo>〉</mo><mo>≡</mo><mo>〈</mo><mtext>T–O</mtext><mo>〉</mo><mo>-</mo><mo>〈</mo><mo>〈</mo><mtext>T–O</mtext><mo>〉</mo><mo>〉</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="124pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="6abfb304be1d8b97681671ce7a3bdf5f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-427-2020-ie00002.svg" width="124pt" height="13pt" src="ejm-32-427-2020-ie00002.png"/></svg:svg></span></span> were considered. Here, apart
from the tetrahedral Al content, the only size-perturbing factor is the
difference between the tetrahedral and the grand mean fractional
<span class="inline-formula"><i>s</i></span>-characters. The resulting rms value was as small as 0.0003 Å.</p>
<p>From this analysis, Al site occupancies, t, can be derived from
observed mean tetrahedral distances, <span class="inline-formula">〈T–O〉<sub>obs</sub></span>, as
</p><div class="disp-formula" content-type="" id="Ch1.Ex1"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="block" overflow="scroll" dspmath="mathml"><mrow><mstyle class="stylechange" displaystyle="true"/><mi mathvariant="normal">t</mi><mo>=</mo><mn mathvariant="normal">0.25</mn><mo>(</mo><mn mathvariant="normal">1</mn><mo>+</mo><msub><mi>n</mi><mrow class="chem"><mi mathvariant="normal">An</mi></mrow></msub><mo>)</mo><mo>+</mo><mfenced open="(" close=")"><mrow><mo>〈</mo><mtext>T–O</mtext><msub><mo>〉</mo><mrow class="chem"><mi mathvariant="normal">adj</mi></mrow></msub><mo>-</mo><mo>〈</mo><mo>〈</mo><mtext>T–O</mtext><mo>〉</mo><mo>〉</mo></mrow></mfenced><mo>/</mo><mn mathvariant="normal">0.12466</mn><mspace linebreak="nobreak" width="0.125em"/><mo>(</mo><mn mathvariant="normal">17</mn><mo>)</mo><mo>,</mo></mrow></math><div><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="256pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="fe07b7a1b3c638e07d3983e3abcfb650"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-427-2020-ue00001.svg" width="256pt" height="16pt" src="ejm-32-427-2020-ue00001.png"/></svg:svg></div></div>
<p>with the observed distance <span class="inline-formula">〈T–O〉<sub>obs</sub></span>
adjusted for the influence of the fractional <span class="inline-formula"><i>s</i></span>-character, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>〈</mo><mtext>T–O</mtext><msub><mo>〉</mo><mrow class="chem"><mi mathvariant="normal">adj</mi></mrow></msub><mo>=</mo><mo>〈</mo><mtext>T–O</mtext><msub><mo>〉</mo><mrow class="chem"><mi mathvariant="normal">obs</mi></mrow></msub><mo>+</mo><mn mathvariant="normal">0.1907</mn><mo>(</mo><mn mathvariant="normal">51</mn><mo>)</mo><mspace width="0.125em" linebreak="nobreak"/><mo>[</mo><mo>〈</mo><msub><mi>f</mi><mi>s</mi></msub><mrow class="chem"><mo>(</mo><mi mathvariant="normal">O</mi><mo>)</mo></mrow><mo>〉</mo><mo>-</mo><mo>〈</mo><mo>〈</mo><msub><mi>f</mi><mi>s</mi></msub><mrow class="chem"><mo>(</mo><mi mathvariant="normal">O</mi><mo>)</mo></mrow><mo>〉</mo><mo>〉</mo><mo>]</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="245pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="76271aee603b405952b6274f3466ce59"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-427-2020-ie00003.svg" width="245pt" height="15pt" src="ejm-32-427-2020-ie00003.png"/></svg:svg></span></span>. This equation served to determine the site
occupancies of 16 intermediate to high albites and one analbite from their
mean tetrahedral distances. It was found that the individual site
occupancies t<span class="inline-formula"><sub>1</sub></span>0, t<span class="inline-formula"><sub>1</sub></span>m and t<span class="inline-formula"><sub>2</sub>0=</span> t<span class="inline-formula"><sub>2</sub></span>m all vary linearly
with the difference <span class="inline-formula">Δt<sub>1</sub>=</span> t<span class="inline-formula"><sub>1</sub>0−</span> t<span class="inline-formula"><sub>1</sub></span>m. <span class="inline-formula">Δt<sub>1</sub></span>, in turn, varies linearly with the length difference, <span class="inline-formula">Δ</span>tr[110], between the unit cell repeat distances [<span class="inline-formula">1∕2<i>a</i></span>, <span class="inline-formula">1∕2<i>b</i></span>, 0] and [<span class="inline-formula">1∕2<i>a</i></span>,
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">2</mn><mi>b</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2fda8e0b28ae904e7551963328325caf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-427-2020-ie00004.svg" width="35pt" height="14pt" src="ejm-32-427-2020-ie00004.png"/></svg:svg></span></span>, 0]. Then, from the <span class="inline-formula">Δ</span>tr[110] indicator, values of <span class="inline-formula">t</span>
were obtained as
</p><div class="disp-formula" content-type="" specific-use="align"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="block" overflow="scroll" dspmath="mathml"><mtable columnalign="left" displaystyle="true"><mtr><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><msub><mi mathvariant="normal">t</mi><mn mathvariant="normal">1</mn></msub><mn mathvariant="normal">0</mn></mrow></mtd><mtd><mrow><mstyle class="stylechange" displaystyle="true"/><mo>=</mo><mo>(</mo><mn mathvariant="normal">1</mn><mo>-</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">0</mn></msub><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">0</mn></msub><mspace linebreak="nobreak" width="0.125em"/><mo>(</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">2</mn></msub><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">tr</mi><mo>[</mo><mn mathvariant="normal">110</mn><mo>]</mo></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><msub><mi mathvariant="normal">t</mi><mn mathvariant="normal">1</mn></msub><mrow class="chem"><mi mathvariant="normal">m</mi></mrow></mrow></mtd><mtd><mrow><mstyle class="stylechange" displaystyle="true"/><mo>=</mo><mo>(</mo><mn mathvariant="normal">1</mn><mo>-</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">0</mn></msub><mo>)</mo><mo>-</mo><mo>(</mo><mn mathvariant="normal">1</mn><mo>-</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">0</mn></msub><mo>)</mo><mspace linebreak="nobreak" width="0.125em"/><mo>(</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">2</mn></msub><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">tr</mi><mo>[</mo><mn mathvariant="normal">110</mn><mo>]</mo></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mstyle displaystyle="true" class="stylechange"/><msub><mi mathvariant="normal">t</mi><mn mathvariant="normal">2</mn></msub><mn mathvariant="normal">0</mn></mrow></mtd><mtd><mrow><mstyle class="stylechange" displaystyle="true"/><mo>=</mo><msub><mi mathvariant="normal">t</mi><mn mathvariant="normal">2</mn></msub><mrow class="chem"><mi mathvariant="normal">m</mi></mrow><mo>=</mo><mo>(</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">0</mn></msub><mo>-</mo><mn mathvariant="normal">0.5</mn><mo>)</mo><mo>-</mo><mo>(</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">0</mn></msub><mo>-</mo><mn mathvariant="normal">0.5</mn><mo>)</mo><mspace linebreak="nobreak" width="0.125em"/><mo>(</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">1</mn></msub><mo>+</mo><msub><mi mathvariant="normal">b</mi><mn mathvariant="normal">2</mn></msub><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">tr</mi><mo>[</mo><mn mathvariant="normal">110</mn><mo>]</mo></mrow><mo>)</mo><mo>,</mo></mrow></mtd></mtr></mtable></math><div><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="248pt" height="46pt" class="svg-formula" dspmath="mathimg" md5hash="cfecd6185490c16477e2a53bb9fd506f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-427-2020-ue00002.svg" width="248pt" height="46pt" src="ejm-32-427-2020-ue00002.png"/></svg:svg></div></div>
<p>with b<span class="inline-formula"><sub>0</sub>=0.7288(16)</span>, b<span class="inline-formula"><sub>1</sub>=0.1103(59)</span> and b<span class="inline-formula"><sub>2</sub>=3.234(32)</span> Å<span class="inline-formula"><sup>−1</sup></span>.</p>
<p>Finally, from an expression that converts the <span class="inline-formula">Δ2<i>θ</i>(131)</span> measure of order into <span class="inline-formula">Δ</span>tr[110] and thus into site occupancies, it was possible to obtain from the
unique suite of bracketed high-pressure experiments performed<span id="page428"/> on albites by
Goldsmith and Jenkins (1985) the evolution with equilibrium temperature of
the thermodynamic order parameter <span class="inline-formula"><i>Q</i><sub>od</sub></span> and of the individual Al site
occupancies t at a pressure of 1 bar. For that purpose, since the
Goldsmith and Jenkins experiments were performed at <span class="inline-formula">≈18</span> kbar, a
procedure was devised that accounts for the effect of pressure on the state
of order. At 1 bar, low albite is stable up to 590 <span class="inline-formula"><sup>∘</sup></span>C, where it
begins to disorder, turning into high albite above 720 <span class="inline-formula"><sup>∘</sup></span>C. The
highly though not fully disordered monoclinic state (monalbite) is reached
at 980 <span class="inline-formula"><sup>∘</sup></span>C, 1 bar, and 1055 <span class="inline-formula"><sup>∘</sup></span>C, 18 kbar, respectively.
Eventually, when applying the determinative equations given above to low
microcline, full order is predicted as in low albite.</p> |
---|---|
ISSN: | 0935-1221 1617-4011 |