Summary: | For Massive multiple-input multiple output (MIMO) systems, many algorithms have been proposed for detecting spatially multiplexed signals, such as reactive tabu search (RTS), minimum mean square error (MMSE), etc. As a heuristic neighborhood search algorithm, RTS is particularly suitable for signal detection in systems with large number of antennas. In this paper, we propose a strategy to reduce the neighborhood searching space of the traditional RTS algorithms. For this, we introduce a constellation constraints (CC) structure to determine whether including a candidate vector into the RTS searching neighborhood. By setting a pre-defined threshold on the symbol constellation, the Euclidean distance between the estimated signal and its nearest constellation points are calculated, and the threshold and distance are compared to separate the reliable estimated signal from unreliable ones. With this structure, the proposed CC-RTS algorithm may ignore a significant number of unnecessary candidates in the RTS neighborhood searching space and greatly reduce the computational complexity of the traditional RTS algorithm. Simulation results show that the BER performance of the proposed CC-RTS algorithm is very close to that of the traditional RTS algorithm, and with about 50% complexity reduction with the same signal-to-noise (SNR) ratio.
|