Summary: | Orientational dependence of the IR absorbing amide bands of silk is demonstrated from two orthogonal longitudinal and transverse microtome slices with a thickness of only ∼100 nm. Scanning near-field optical microscopy (SNOM) which preferentially probes orientation perpendicular to the sample’s surface was used. Spatial resolution of the silk−epoxy boundary was ∼100 nm resolution, while the spectra were collected by a ∼10 nm tip. Ratio of the absorbance of the amide-II C-N at 1512 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> and amide-I C=O <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-sheets at 1628 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> showed sensitivity of SNOM to the molecular orientation. SNOM characterisation is complimentary to the far-field absorbance which is sensitive to the in-plane polarisation. Volumes with cross sections smaller than 100 nm can be characterised for molecular orientation. A method of absorbance measurements at four angles of the slice cut orientation, which is equivalent to the four polarisation angles absorbance measurement, is proposed.
|