Density functional theory calculated data of different electronic states and bond stretch isomers of tris(trifluoroacetylacetonato)-manganese(III)

In this data article, using density functional theory calculations, it is shown that in the gas phase, free from crystal packing effects, different elongation and compression Jahn-Teller geometries of fac and mer tris(trifluoroacetylacetonato)-manganese(III) are possible. A careful construction of i...

Full description

Bibliographic Details
Main Author: Jeanet Conradie
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340919311138
Description
Summary:In this data article, using density functional theory calculations, it is shown that in the gas phase, free from crystal packing effects, different elongation and compression Jahn-Teller geometries of fac and mer tris(trifluoroacetylacetonato)-manganese(III) are possible. A careful construction of input geometries made it possible to obtain the density functional theory calculated optimized geometries of different elongation and compression Jahn-Teller geometries of fac and mer tris(trifluoroacetylacetonato)-manganese(III). The mer CF3–CF3 elongation isomer has the lowest energy (Fig. 1), while in the solid state a mer CH3–CH3 compression tris(trifluoroacetylacetonato)-manganese(III) isomer is experimentally characterized [1]. The rare experimental example of a compression tris(β-diketonato)-manganese(III) structure is ascribed to intermolecular F⋯F and F⋯H interactions between the tris(trifluoroacetylacetonato)-manganese(III) molecules in the solid crystalline state, contributing to the distortion of the coordination polyhedron of tris(trifluoroacetylacetonato)-manganese(III) from the expected elongation Jahn-Teller geometry, to the observed higher energy electronic state with compression Jahn-Teller distortion. Keywords: Jahn–Teller, DFT, Elongation, Manganese(III)trifluoroacetylacetonato, High-spin
ISSN:2352-3409