Epistatic Interactions in NS5A of Hepatitis C Virus Suggest Drug Resistance Mechanisms

Hepatitis C virus (HCV) causes a major health burden and can be effectively treated by direct-acting antivirals (DAAs). The non-structural protein 5A (NS5A), which plays a role in the viral genome replication, is one of the DAAs’ targets. Resistance-associated viruses (RAVs) harbouring NS5...

Full description

Bibliographic Details
Main Authors: Elena Knops, Saleta Sierra, Prabhav Kalaghatgi, Eva Heger, Rolf Kaiser, Olga V. Kalinina
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Genes
Subjects:
Online Access:http://www.mdpi.com/2073-4425/9/7/343
Description
Summary:Hepatitis C virus (HCV) causes a major health burden and can be effectively treated by direct-acting antivirals (DAAs). The non-structural protein 5A (NS5A), which plays a role in the viral genome replication, is one of the DAAs’ targets. Resistance-associated viruses (RAVs) harbouring NS5A resistance-associated mutations (RAMs) have been described at baseline and after therapy failure. A mutation from glutamine to arginine at position 30 (Q30R) is a characteristic RAM for the HCV sub/genotype (GT) 1a, but arginine corresponds to the wild type in the GT-1b; still, GT-1b strains are susceptible to NS5A-inhibitors. In this study, we show that GT-1b strains with R30Q often display other specific NS5A substitutions, particularly in positions 24 and 34. We demonstrate that in GT-1b secondary substitutions usually happen after initial R30Q development in the phylogeny, and that the chemical properties of the corresponding amino acids serve to restore the positive charge in this region, acting as compensatory mutations. These findings may have implications for RAVs treatment.
ISSN:2073-4425