Fluctuating environments select for short-term phenotypic variation leading to long-term exploration.

Genetic spaces are often described in terms of fitness landscapes or genotype-to-phenotype maps, where each genetic sequence is associated with phenotypic properties and linked to other genotypes that are a single mutational step away. The positions close to a genotype make up its "mutational l...

Full description

Bibliographic Details
Main Authors: Rosangela Canino-Koning, Michael J Wiser, Charles Ofria
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-04-01
Series:PLoS Computational Biology
Online Access:http://europepmc.org/articles/PMC6474582?pdf=render
Description
Summary:Genetic spaces are often described in terms of fitness landscapes or genotype-to-phenotype maps, where each genetic sequence is associated with phenotypic properties and linked to other genotypes that are a single mutational step away. The positions close to a genotype make up its "mutational landscape" and, in aggregate, determine the short-term evolutionary potential of a population. Populations with wider ranges of phenotypes in their mutational neighborhood are known to be more evolvable. Likewise, those with fewer phenotypic changes available in their local neighborhoods are more mutationally robust. Here, we examine whether forces that change the distribution of phenotypes available by mutation profoundly alter subsequent evolutionary dynamics. We compare evolved populations of digital organisms that were subject to either static or cyclically-changing environments. For each of these, we examine diversity of the phenotypes that are produced through mutations in order to characterize the local genotype-phenotype map. We demonstrate that environmental change can push populations toward more evolvable mutational landscapes where many alternate phenotypes are available, though purely deleterious mutations remain suppressed. Further, we show that populations in environments with harsh changes switch phenotypes more readily than those in environments with more benign changes. We trace this effect to repeated population bottlenecks in the harsh environments, which result in shorter coalescence times and keep populations in regions of the mutational landscape where the phenotypic shifts in question are more likely to occur. Typically, static environments select solely for immediate optimization, at the expensive of long-term evolvability. In contrast, we show that with changing environments, short-term pressures to deal with immediate challenges can align with long-term pressures to explore a more productive portion of the mutational landscape.
ISSN:1553-734X
1553-7358