Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading
This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP) reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000) specification. The bond test consisted...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | International Journal of Polymer Science |
Online Access: | http://dx.doi.org/10.1155/2015/367528 |
Summary: | This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP) reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000) specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading. |
---|---|
ISSN: | 1687-9422 1687-9430 |