Adding TiC Nanoparticles to Magnesium Alloy ZK60A for Strength/Ductility Enhancement
ZK60A nanocomposite containing TiC nanoparticles was fabricated using solidification processing followed by hot extrusion. The ZK60A nanocomposite exhibited similar grain size to monolithic ZK60A and significantly reduced presence of intermetallic phase, reasonable TiC nanoparticle distribution, non...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2011-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2011/642980 |
Summary: | ZK60A nanocomposite containing TiC nanoparticles was fabricated using solidification processing followed by hot extrusion. The ZK60A nanocomposite exhibited similar grain size to monolithic ZK60A and significantly reduced presence of intermetallic phase, reasonable TiC nanoparticle distribution, nondominant (0 0 0 2) texture in the longitudinal direction, and 16% lower hardness than monolithic ZK60A. Compared to monolithic ZK60A (in tension), the ZK60A nanocomposite simultaneously exhibited higher 0.2% TYS, UTS, failure strain, and work of fracture (WOF) (+13%, +15%, +76%, and +106%, resp.). Also, compared to monolithic ZK60A (in compression), the ZK60A nanocomposite exhibited lower 0.2% CYS (−17%) and higher UCS, failure strain, and WOF (+11%, +29%, and +34%, resp.). The beneficial effect of adding TiC nanoparticles on the enhanced tensile and compressive response of ZK60A is investigated in this paper. |
---|---|
ISSN: | 1687-4110 1687-4129 |