Astrophysical Information from Objective Prism Digitized Images: Classification with an Artificial Neural Network

<p/> <p>Stellar spectral classification is not only a tool for labeling individual stars but is also useful in studies of stellar population synthesis. Extracting the physical quantities from the digitized spectral plates involves three main stages: detection, extraction, and classificat...

Full description

Bibliographic Details
Main Author: Bratsolis Emmanuel
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:EURASIP Journal on Advances in Signal Processing
Subjects:
Online Access:http://dx.doi.org/10.1155/ASP.2005.2536
Description
Summary:<p/> <p>Stellar spectral classification is not only a tool for labeling individual stars but is also useful in studies of stellar population synthesis. Extracting the physical quantities from the digitized spectral plates involves three main stages: detection, extraction, and classification of spectra. Low-dispersion objective prism images have been used and automated methods have been developed. The detection and extraction problems have been presented in previous works. In this paper, we present a classification method based on an artificial neural network (ANN). We make a brief presentation of the entire automated system and we compare the new classification method with the previously used method of maximum correlation coefficient (MCC). Digitized photographic material has been used here. The method can also be used on CCD spectral images.</p>
ISSN:1687-6172
1687-6180