Dynamics of conflict during the Ebola outbreak in the Democratic Republic of the Congo 2018–2019

Abstract Background The 2018–2019 Ebola virus disease (EVD) outbreak in North Kivu and Ituri provinces in the Democratic Republic of the Congo (DRC) is the largest ever recorded in the DRC. It has been declared a Public Health Emergency of International Concern. The outbreak emerged in a region of c...

Full description

Bibliographic Details
Main Authors: Moritz U. G. Kraemer, David M. Pigott, Sarah C. Hill, Samantha Vanderslott, Robert C. Reiner, Stephanie Stasse, John S. Brownstein, Bernardo Gutierrez, Francis Dennig, Simon I. Hay, G. R. William Wint, Oliver G. Pybus, Marcia C. Castro, Patrick Vinck, Phuong N. Pham, Eric J. Nilles, Simon Cauchemez
Format: Article
Language:English
Published: BMC 2020-04-01
Series:BMC Medicine
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12916-020-01574-1
Description
Summary:Abstract Background The 2018–2019 Ebola virus disease (EVD) outbreak in North Kivu and Ituri provinces in the Democratic Republic of the Congo (DRC) is the largest ever recorded in the DRC. It has been declared a Public Health Emergency of International Concern. The outbreak emerged in a region of chronic conflict and insecurity, and directed attacks against health care workers may have interfered with disease response activities. Our study characterizes and quantifies the broader conflict dynamics over the course of the outbreak by pairing epidemiological and all available spatial conflict data. Methods We build a set of conflict variables by mapping the spatial locations of all conflict events and their associated deaths in each of the affected health zones in North Kivu and Ituri, eastern DRC, before and during the outbreak. Using these data, we compare patterns of conflict before and during the outbreak in affected health zones and those not affected. We then test whether conflict is correlated with increased EVD transmission at the health zone level. Findings The incidence of conflict events per capita is ~ 600 times more likely in Ituri and North Kivu than for the rest of the DRC. We identified 15 time periods of substantial uninterrupted transmission across 11 health zones and a total of 120 bi-weeks. We do not find significant short-term associations between the bi-week reproduction numbers and the number of conflicts. However, we do find that the incidence of conflict per capita was correlated with the incidence of EVD per capita at the health zone level for the entire outbreak (Pearson’s r = 0.33, 95% CI 0.05–0.57). In the two provinces, the monthly number of conflict events also increased by a factor of 2.7 in Ebola-affected health zones (p value < 0.05) compared to 2.0 where no transmission was reported and 1.3 in the rest of the DRC, in the period between February 2019 and July 2019. Conclusion We characterized the association between variables documenting broad conflict levels and EVD transmission. Such assessment is important to understand if and how such conflict variables could be used to inform the outbreak response. We found that while these variables can help characterize long-term challenges and susceptibilities of the different regions they provide little insight on the short-term dynamics of EVD transmission.
ISSN:1741-7015