Non-perturbative electroweak-scalegenesis on the test bench of dark matter detection
Abstract We revisit a recently proposed scale invariant extension of the standard model, in which the scalar bi-linear condensate in a strongly interacting hidden sector dynamically breaks scale symmetry, thereby triggering electroweak symmetry breaking. Relaxing the previously made assumption on $$...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-03-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-018-5713-4 |
Summary: | Abstract We revisit a recently proposed scale invariant extension of the standard model, in which the scalar bi-linear condensate in a strongly interacting hidden sector dynamically breaks scale symmetry, thereby triggering electroweak symmetry breaking. Relaxing the previously made assumption on $$U(N_f)$$ U(Nf) flavor symmetry we find that the presence of the would-be dark matter candidate opens a new annihilation process of dark matter at finite temperature, such that the model can satisfy stringent constraints of the future experiments of the dark matter direct detection. |
---|---|
ISSN: | 1434-6044 1434-6052 |