Thermal Stability of Retained Austenite and Properties of A Multi-Phase Low Alloy Steel

In this work, we elucidate the effects of tempering on the microstructure and properties in a low carbon low alloy steel, with particular emphasis on the thermal stability of retained austenite during high-temperature tempering at 500–700 °C for 1 h. Volume fraction of ~14% of reta...

Full description

Bibliographic Details
Main Authors: Zhenjia Xie, Lin Xiong, Gang Han, Xuelin Wang, Chengjia Shang
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/8/10/807
Description
Summary:In this work, we elucidate the effects of tempering on the microstructure and properties in a low carbon low alloy steel, with particular emphasis on the thermal stability of retained austenite during high-temperature tempering at 500–700 °C for 1 h. Volume fraction of ~14% of retained austenite was obtained in the studied steel by two-step intercritical heat treatment. Results from transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated that retained austenite had high thermal stability when tempering at 500 and 600 °C for 1 h. The volume fraction was ~11–12%, the length and width remained ~0.77 and 0.21 μm, and concentration of Mn and Ni in retained austenite remained ~6.2–6.6 and ~1.6 wt %, respectively. However, when tempering at 700 °C for 1 h, the volume fraction of retained austenite was decreased largely to ~8%. The underlying reason could be attributed to the growth of austenite during high-temperature holding, leading to a depletion of alloy contents and a decrease in stability. Moreover, for samples tempered at 700 °C for 1 h, retained austenite rapidly transformed into martensite at a strain of 2–10%, and a dramatic increase in work hardening was observed. This indicated that the mechanical stability of retained austenite decreased.
ISSN:2075-4701