HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis.
Adherens junctions (AJs) are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5821396?pdf=render |
id |
doaj-0a237717f3c149c7bc0a135717f7e879 |
---|---|
record_format |
Article |
spelling |
doaj-0a237717f3c149c7bc0a135717f7e8792020-11-25T00:48:31ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01132e019327910.1371/journal.pone.0193279HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis.Thanh Thi Kim Vuong-BrenderArthur BoutillonDavid RodriguezVincent LavilleyMichel LabouesseAdherens junctions (AJs) are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET)-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions.http://europepmc.org/articles/PMC5821396?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Thanh Thi Kim Vuong-Brender Arthur Boutillon David Rodriguez Vincent Lavilley Michel Labouesse |
spellingShingle |
Thanh Thi Kim Vuong-Brender Arthur Boutillon David Rodriguez Vincent Lavilley Michel Labouesse HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. PLoS ONE |
author_facet |
Thanh Thi Kim Vuong-Brender Arthur Boutillon David Rodriguez Vincent Lavilley Michel Labouesse |
author_sort |
Thanh Thi Kim Vuong-Brender |
title |
HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. |
title_short |
HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. |
title_full |
HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. |
title_fullStr |
HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. |
title_full_unstemmed |
HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. |
title_sort |
hmp-1/α-catenin promotes junctional mechanical integrity during morphogenesis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
Adherens junctions (AJs) are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET)-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions. |
url |
http://europepmc.org/articles/PMC5821396?pdf=render |
work_keys_str_mv |
AT thanhthikimvuongbrender hmp1acateninpromotesjunctionalmechanicalintegrityduringmorphogenesis AT arthurboutillon hmp1acateninpromotesjunctionalmechanicalintegrityduringmorphogenesis AT davidrodriguez hmp1acateninpromotesjunctionalmechanicalintegrityduringmorphogenesis AT vincentlavilley hmp1acateninpromotesjunctionalmechanicalintegrityduringmorphogenesis AT michellabouesse hmp1acateninpromotesjunctionalmechanicalintegrityduringmorphogenesis |
_version_ |
1725255830064857088 |