New Methods of Finite-Time Synchronization for a Class of Fractional-Order Delayed Neural Networks
Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are consi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/1804383 |
Summary: | Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results. |
---|---|
ISSN: | 1024-123X 1563-5147 |