FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution
Using Fragaceatoxin C nanopores to study peptides below 1.6 kDa is challenging. Here the authors demonstrate that nanopores can be engineered to different sizes to detect a range of peptide lengths below the previous resolution limit, and show that the mass of a peptide can be identified by ionic cu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-02-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-08761-6 |