Study of ODE limit problems for reaction-diffusion equations
In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attra...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2018-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3807.pdf |
id |
doaj-099d6af9fcbf4b9cb21bd3bf63f8605e |
---|---|
record_format |
Article |
spelling |
doaj-099d6af9fcbf4b9cb21bd3bf63f8605e2020-11-25T00:53:37ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742018-01-01381117131https://doi.org/10.7494/OpMath.2018.38.1.1173807Study of ODE limit problems for reaction-diffusion equationsJacson Simsen0Mariza Stefanello Simsen1Aleksandra Zimmermann2Universidade Federal de Itajubá, Instituto de Matemática e Computação, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - BrazilUniversidade Federal de Itajubá, Instituto de Matemática e Computação, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - BrazilUniversität of Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, GermanyIn this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \(L^{\infty}(\Omega)\) and the diffusion coefficients go to infinity.http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3807.pdfODE limit problemsshadow systemsreaction-diffusion equationsparabolic problemsvariable exponentsattractorsupper semicontinuity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jacson Simsen Mariza Stefanello Simsen Aleksandra Zimmermann |
spellingShingle |
Jacson Simsen Mariza Stefanello Simsen Aleksandra Zimmermann Study of ODE limit problems for reaction-diffusion equations Opuscula Mathematica ODE limit problems shadow systems reaction-diffusion equations parabolic problems variable exponents attractors upper semicontinuity |
author_facet |
Jacson Simsen Mariza Stefanello Simsen Aleksandra Zimmermann |
author_sort |
Jacson Simsen |
title |
Study of ODE limit problems for reaction-diffusion equations |
title_short |
Study of ODE limit problems for reaction-diffusion equations |
title_full |
Study of ODE limit problems for reaction-diffusion equations |
title_fullStr |
Study of ODE limit problems for reaction-diffusion equations |
title_full_unstemmed |
Study of ODE limit problems for reaction-diffusion equations |
title_sort |
study of ode limit problems for reaction-diffusion equations |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2018-01-01 |
description |
In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \(L^{\infty}(\Omega)\) and the diffusion coefficients go to infinity. |
topic |
ODE limit problems shadow systems reaction-diffusion equations parabolic problems variable exponents attractors upper semicontinuity |
url |
http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3807.pdf |
work_keys_str_mv |
AT jacsonsimsen studyofodelimitproblemsforreactiondiffusionequations AT marizastefanellosimsen studyofodelimitproblemsforreactiondiffusionequations AT aleksandrazimmermann studyofodelimitproblemsforreactiondiffusionequations |
_version_ |
1725237411287400448 |