Study of ODE limit problems for reaction-diffusion equations

In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attra...

Full description

Bibliographic Details
Main Authors: Jacson Simsen, Mariza Stefanello Simsen, Aleksandra Zimmermann
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2018-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3807.pdf
id doaj-099d6af9fcbf4b9cb21bd3bf63f8605e
record_format Article
spelling doaj-099d6af9fcbf4b9cb21bd3bf63f8605e2020-11-25T00:53:37ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742018-01-01381117131https://doi.org/10.7494/OpMath.2018.38.1.1173807Study of ODE limit problems for reaction-diffusion equationsJacson Simsen0Mariza Stefanello Simsen1Aleksandra Zimmermann2Universidade Federal de Itajubá, Instituto de Matemática e Computação, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - BrazilUniversidade Federal de Itajubá, Instituto de Matemática e Computação, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - BrazilUniversität of Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, GermanyIn this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \(L^{\infty}(\Omega)\) and the diffusion coefficients go to infinity.http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3807.pdfODE limit problemsshadow systemsreaction-diffusion equationsparabolic problemsvariable exponentsattractorsupper semicontinuity
collection DOAJ
language English
format Article
sources DOAJ
author Jacson Simsen
Mariza Stefanello Simsen
Aleksandra Zimmermann
spellingShingle Jacson Simsen
Mariza Stefanello Simsen
Aleksandra Zimmermann
Study of ODE limit problems for reaction-diffusion equations
Opuscula Mathematica
ODE limit problems
shadow systems
reaction-diffusion equations
parabolic problems
variable exponents
attractors
upper semicontinuity
author_facet Jacson Simsen
Mariza Stefanello Simsen
Aleksandra Zimmermann
author_sort Jacson Simsen
title Study of ODE limit problems for reaction-diffusion equations
title_short Study of ODE limit problems for reaction-diffusion equations
title_full Study of ODE limit problems for reaction-diffusion equations
title_fullStr Study of ODE limit problems for reaction-diffusion equations
title_full_unstemmed Study of ODE limit problems for reaction-diffusion equations
title_sort study of ode limit problems for reaction-diffusion equations
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2018-01-01
description In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \(L^{\infty}(\Omega)\) and the diffusion coefficients go to infinity.
topic ODE limit problems
shadow systems
reaction-diffusion equations
parabolic problems
variable exponents
attractors
upper semicontinuity
url http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3807.pdf
work_keys_str_mv AT jacsonsimsen studyofodelimitproblemsforreactiondiffusionequations
AT marizastefanellosimsen studyofodelimitproblemsforreactiondiffusionequations
AT aleksandrazimmermann studyofodelimitproblemsforreactiondiffusionequations
_version_ 1725237411287400448