Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
We prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$ assuming cer...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
1999-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=18 |
id |
doaj-099c7b8050a34cdbabfc548f1e6b6d6f |
---|---|
record_format |
Article |
spelling |
doaj-099c7b8050a34cdbabfc548f1e6b6d6f2021-07-14T07:21:17ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38751999-01-011999912410.14232/ejqtde.1999.1.918Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditionsMaria do Rosário Grossinho0Pierpaolo Omari1Technical University of Lisboa, PortugalUniversity of Trieste, ItalyWe prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$ assuming certain conditions on the ratio $2\int_0^s f(x,t,\sigma) d\sigma/s^2$ with respect to the principal eigenvalue of the associated linear problem. The method of proof, whcih is based on the construction of upper and lower solutions, also yields information on the localization and the stability of the solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=18 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Maria do Rosário Grossinho Pierpaolo Omari |
spellingShingle |
Maria do Rosário Grossinho Pierpaolo Omari Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Maria do Rosário Grossinho Pierpaolo Omari |
author_sort |
Maria do Rosário Grossinho |
title |
Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions |
title_short |
Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions |
title_full |
Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions |
title_fullStr |
Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions |
title_full_unstemmed |
Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions |
title_sort |
existence of stable periodic solutions of a semilinear parabolic problem under hammerstein-type conditions |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
1999-01-01 |
description |
We prove the solvability of the parabolic problem
$$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$
$$u(x,t)=0\hbox{ on }\partial\Omega\times R$$
$$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$
assuming certain conditions on the ratio $2\int_0^s f(x,t,\sigma) d\sigma/s^2$ with respect to the principal eigenvalue of the associated linear problem. The method of proof, whcih is based on the construction of upper and lower solutions, also yields information on the localization and the stability of the solution. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=18 |
work_keys_str_mv |
AT mariadorosariogrossinho existenceofstableperiodicsolutionsofasemilinearparabolicproblemunderhammersteintypeconditions AT pierpaoloomari existenceofstableperiodicsolutionsofasemilinearparabolicproblemunderhammersteintypeconditions |
_version_ |
1721303888362995712 |