Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions

We prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$ assuming cer...

Full description

Bibliographic Details
Main Authors: Maria do Rosário Grossinho, Pierpaolo Omari
Format: Article
Language:English
Published: University of Szeged 1999-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=18
id doaj-099c7b8050a34cdbabfc548f1e6b6d6f
record_format Article
spelling doaj-099c7b8050a34cdbabfc548f1e6b6d6f2021-07-14T07:21:17ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38751999-01-011999912410.14232/ejqtde.1999.1.918Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditionsMaria do Rosário Grossinho0Pierpaolo Omari1Technical University of Lisboa, PortugalUniversity of Trieste, ItalyWe prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$ assuming certain conditions on the ratio $2\int_0^s f(x,t,\sigma) d\sigma/s^2$ with respect to the principal eigenvalue of the associated linear problem. The method of proof, whcih is based on the construction of upper and lower solutions, also yields information on the localization and the stability of the solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=18
collection DOAJ
language English
format Article
sources DOAJ
author Maria do Rosário Grossinho
Pierpaolo Omari
spellingShingle Maria do Rosário Grossinho
Pierpaolo Omari
Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Maria do Rosário Grossinho
Pierpaolo Omari
author_sort Maria do Rosário Grossinho
title Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
title_short Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
title_full Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
title_fullStr Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
title_full_unstemmed Existence of stable periodic solutions of a semilinear parabolic problem under Hammerstein-type conditions
title_sort existence of stable periodic solutions of a semilinear parabolic problem under hammerstein-type conditions
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 1999-01-01
description We prove the solvability of the parabolic problem $$\partial_t u-\sum_{i,j=1}^N \partial_{x_i}(a_{i,j}(x,t)\partial_{x_j}u)+\sum_{i=1}^N b_i(x,t)\partial_{x_i}u=f(x,t,u)\hbox{ in }\Omega\times R$$ $$u(x,t)=0\hbox{ on }\partial\Omega\times R$$ $$u(x,t)=u(x,t+T)\hbox{ in }\Omega\times R$$ assuming certain conditions on the ratio $2\int_0^s f(x,t,\sigma) d\sigma/s^2$ with respect to the principal eigenvalue of the associated linear problem. The method of proof, whcih is based on the construction of upper and lower solutions, also yields information on the localization and the stability of the solution.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=18
work_keys_str_mv AT mariadorosariogrossinho existenceofstableperiodicsolutionsofasemilinearparabolicproblemunderhammersteintypeconditions
AT pierpaoloomari existenceofstableperiodicsolutionsofasemilinearparabolicproblemunderhammersteintypeconditions
_version_ 1721303888362995712