Identification of a Reaction Intermediate and Mechanism of Action of Intermediary Enzymes in Plumbagin Biosynthetic Pathway Using Molecular Dynamics Simulation

The biosynthesis of plumbagin is known to occur via the acetate polymalonate pathway; however there are several intermediary steps that remain unidentified that leads to its synthesis. The study identifies enzyme naphthoate synthase to catalyze the cyclization of O-malonyl benzoyl CoA to form an int...

Full description

Bibliographic Details
Main Authors: Muralidharan K S, Roopa Lalitha, Shanmugam Girija, Pravin Kumar R, Akshai P S, Meghana N Swamy, Nayana M, Malaiyandi Jayanthi
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/3/280
Description
Summary:The biosynthesis of plumbagin is known to occur via the acetate polymalonate pathway; however there are several intermediary steps that remain unidentified that leads to its synthesis. The study identifies enzyme naphthoate synthase to catalyze the cyclization of O-malonyl benzoyl CoA to form an intermediate that is acted upon by thioesterase before the reaction proceeds to form plumbagin. Two possible structures were predicted for this intermediate using quantum mechanics studies. A total of 60 ns molecular dynamics simulations revealed the most probable intermediate structure of the predicted two.
ISSN:2073-4344