Using Plasma Etching to Access the Polymer Density Distribution and Diffusivity of Gel Particles

In this paper we examine the polymer density distribution of gel particles and its effect on solvent diffusivity through the polymer network. In order to access the inner particle regions, external polymer layers were removed by plasma etching, thus reducing them from the outside. Higher polymer den...

Full description

Bibliographic Details
Main Authors: Ivan J. Suarez, Benjamin Sierra-Martin, Antonio Fernandez-Barbero
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/15/2537
Description
Summary:In this paper we examine the polymer density distribution of gel particles and its effect on solvent diffusivity through the polymer network. In order to access the inner particle regions, external polymer layers were removed by plasma etching, thus reducing them from the outside. Higher polymer densities after erosion showed internal heterogeneity, with the density increasing towards the center of the particles. An exponential decay polymer density model is proposed, and the spatial relaxation length measured. The diffusion of solvent through the particles, before and after the plasma oxidation, revealed a correlation between the diffusion coefficient and the internal density.
ISSN:2073-4360