Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problem...

Full description

Bibliographic Details
Main Authors: Derry FitzGerald, Matt Cranitch, Eugene Coyle
Format: Article
Language:English
Published: Hindawi Limited 2008-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2008/872425
Description
Summary:Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.
ISSN:1687-5265
1687-5273