Distance in cayley graphs on permutation groups generated by $k$ $m$-Cycles

‎‎In this paper‎, ‎we extend upon the results of B‎. ‎Suceav{u{a}} and R‎. ‎Stong [Amer‎. ‎Math‎. ‎Monthly‎, ‎110 (2003) 162--162]‎, ‎which they computed the minimum number of 3-cycles needed to generate an even permutation‎. ‎Let $Omega^n_{k,m}$ be the set of all permutations of the form $c_1 c_2 c...

Full description

Bibliographic Details
Main Authors: Zohreh Mostaghim, Mohammad Hossein Ghaffari
Format: Article
Language:English
Published: University of Isfahan 2017-09-01
Series:Transactions on Combinatorics
Subjects:
Online Access:http://toc.ui.ac.ir/article_21473_2e07c04c5fad360f2c8b9fc03265c648.pdf
Description
Summary:‎‎In this paper‎, ‎we extend upon the results of B‎. ‎Suceav{u{a}} and R‎. ‎Stong [Amer‎. ‎Math‎. ‎Monthly‎, ‎110 (2003) 162--162]‎, ‎which they computed the minimum number of 3-cycles needed to generate an even permutation‎. ‎Let $Omega^n_{k,m}$ be the set of all permutations of the form $c_1 c_2 cdots c_k$‎ ‎where $c_i$'s are arbitrary $m$-cycles in $S_n$‎. ‎Suppose that $Gamma^n_{k,m}$ be the Cayley graph on subgroup of $S_n$ generated by all permutations‎ ‎in $Omega^n_{k,m}$‎. ‎We find a shortest path joining identity and any vertex of $Gamma^n_{k,m}$‎, ‎for arbitrary natural number $k$‎, ‎and $m=2‎ , ‎‎, ‎3,‎, ‎4$‎. ‎Also‎, ‎we calculate the diameter of these Cayley graphs‎. ‎As an application‎, ‎we present an algorithm for finding a short expression of a permutation as products of given permutations‎. ‎
ISSN:2251-8657
2251-8665