Comparison of Motion Artefact Reduction Methods and the Implementation of Adaptive Motion Artefact Reduction in Wearable Electrocardiogram Monitoring

A motion artefact is a kind of noise that exists widely in wearable electrocardiogram (ECG) monitoring. Reducing motion artefact is challenging in ECG signal preprocessing because the spectrum of motion artefact usually overlaps with the very important spectral components of the ECG signal. In this...

Full description

Bibliographic Details
Main Authors: Xiang An, George K. Stylios
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/5/1468
Description
Summary:A motion artefact is a kind of noise that exists widely in wearable electrocardiogram (ECG) monitoring. Reducing motion artefact is challenging in ECG signal preprocessing because the spectrum of motion artefact usually overlaps with the very important spectral components of the ECG signal. In this paper, the performance of the finite impulse response (FIR) filter, infinite impulse response (IIR) filter, moving average filter, moving median filter, wavelet transform, empirical mode decomposition, and adaptive filter in motion artefact reduction is studied and compared. The results of this study demonstrate that the adaptive filter performs better than other denoising methods, especially in dealing with the abnormal ECG signal which is measured from a patient with heart disease. In the implementation of adaptive motion artefact reduction, the results show that the use of the impedance pneumography signal as the reference input signal for the adaptive filter can effectively reduce the motion artefact in the ECG signal.
ISSN:1424-8220