On G-finitistic spaces and related notions
Let X be a G-space where G is a topological group. We show that X is G-finitistic iff the orbit space X/G is finitistic. This result allows us to answer a question raised in [5] asking for an equivariant characterization of a non-finitistic G-space where G is a compact Lie group. For an arbitrary co...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1992-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171292000486 |
Summary: | Let X be a G-space where G is a topological group. We show that X is G-finitistic iff the orbit space X/G is finitistic. This result allows us to answer a question raised in [5] asking for an equivariant characterization of a non-finitistic G-space where G is a compact Lie group. For an arbitrary compact group G a simple characterization of G-finitistic spaces has been obtained in terms of new notions of G-compactness and G-dimension. |
---|---|
ISSN: | 0161-1712 1687-0425 |