Homology Groups of a Pipeline Petri Net

<p>Petri net is said to be elementary if every place can contain no more than one token. In this paper, it is studied topological properties of the elementary Petri net for a pipeline consisting of n functional devices. If the work of the functional devices is considered continuous, we can com...

Full description

Bibliographic Details
Main Authors: A. A. Husainov, E. S. Bushmeleva, T. A. Trishina
Format: Article
Language:English
Published: Yaroslavl State University 2013-01-01
Series:Modelirovanie i Analiz Informacionnyh Sistem
Subjects:
Online Access:http://mais-journal.ru/jour/article/view/208
id doaj-092cdcb4982b4408bdfc351588174324
record_format Article
spelling doaj-092cdcb4982b4408bdfc3515881743242020-11-24T23:07:47ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172013-01-0120292103202Homology Groups of a Pipeline Petri NetA. A. Husainov0E. S. Bushmeleva1T. A. Trishina2ФГБОУ ВПО “Комсомольский-на-Амуре государственный технический университет”ФГБОУ ВПО “Комсомольский-на-Амуре государственный технический университет”ФГБОУ ВПО “Комсомольский-на-Амуре государственный технический университет”<p>Petri net is said to be elementary if every place can contain no more than one token. In this paper, it is studied topological properties of the elementary Petri net for a pipeline consisting of n functional devices. If the work of the functional devices is considered continuous, we can come to some topological space of “intermediate” states. In the paper, it is calculated the homology groups of this topological space. By induction on n, using the Addition Sequence for homology groups of semicubical sets, it is proved that in dimension 0 and 1 the integer homology groups of these nets are equal to the group of integers, and in the remaining dimensions are zero. Directed homology groups are studied. A connection of these groups with deadlocks and newsletters is found. This helps to prove that all directed homology groups of the pipeline elementary Petri nets are zeroth.</p>http://mais-journal.ru/jour/article/view/208моноид трассасинхронная система переходовэлементарная сеть Петриконвейерполукубическое множествогомологии малых категорий
collection DOAJ
language English
format Article
sources DOAJ
author A. A. Husainov
E. S. Bushmeleva
T. A. Trishina
spellingShingle A. A. Husainov
E. S. Bushmeleva
T. A. Trishina
Homology Groups of a Pipeline Petri Net
Modelirovanie i Analiz Informacionnyh Sistem
моноид трасс
асинхронная система переходов
элементарная сеть Петри
конвейер
полукубическое множество
гомологии малых категорий
author_facet A. A. Husainov
E. S. Bushmeleva
T. A. Trishina
author_sort A. A. Husainov
title Homology Groups of a Pipeline Petri Net
title_short Homology Groups of a Pipeline Petri Net
title_full Homology Groups of a Pipeline Petri Net
title_fullStr Homology Groups of a Pipeline Petri Net
title_full_unstemmed Homology Groups of a Pipeline Petri Net
title_sort homology groups of a pipeline petri net
publisher Yaroslavl State University
series Modelirovanie i Analiz Informacionnyh Sistem
issn 1818-1015
2313-5417
publishDate 2013-01-01
description <p>Petri net is said to be elementary if every place can contain no more than one token. In this paper, it is studied topological properties of the elementary Petri net for a pipeline consisting of n functional devices. If the work of the functional devices is considered continuous, we can come to some topological space of “intermediate” states. In the paper, it is calculated the homology groups of this topological space. By induction on n, using the Addition Sequence for homology groups of semicubical sets, it is proved that in dimension 0 and 1 the integer homology groups of these nets are equal to the group of integers, and in the remaining dimensions are zero. Directed homology groups are studied. A connection of these groups with deadlocks and newsletters is found. This helps to prove that all directed homology groups of the pipeline elementary Petri nets are zeroth.</p>
topic моноид трасс
асинхронная система переходов
элементарная сеть Петри
конвейер
полукубическое множество
гомологии малых категорий
url http://mais-journal.ru/jour/article/view/208
work_keys_str_mv AT aahusainov homologygroupsofapipelinepetrinet
AT esbushmeleva homologygroupsofapipelinepetrinet
AT tatrishina homologygroupsofapipelinepetrinet
_version_ 1725617123210821632