A Novel WebVR-Based Lightweight Framework for Virtual Visualization of Blood Vasculum

With the arrival of the Web 2.0 era and the rapid development of virtual reality (VR) technology in recent years, WebVR technology has emerged as the combination of Web 2.0 and VR. Moreover, the concept of “WebVR + medical science”is also proposed to advance medical application...

Full description

Bibliographic Details
Main Authors: Chenxi Huang, Wen Zhou, Yisha Lan, Fei Chen, Yongtao Hao, Yongqiang Cheng, Yonghong Peng
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8365682/
Description
Summary:With the arrival of the Web 2.0 era and the rapid development of virtual reality (VR) technology in recent years, WebVR technology has emerged as the combination of Web 2.0 and VR. Moreover, the concept of “WebVR + medical science”is also proposed to advance medical applications. However, due to the limited storage space and low computing capability of Web browsers, it is difficult to achieve real-time rendering of large-scale medical vascular models on the Web, let alone large-scale vascular animation simulations. The framework proposed in this paper can achieve virtual display of the medical blood vasculum, including lightweight processing of the vasculum and virtual realization of blood flow. This innovative framework presents a simulation algorithm for the virtual blood path based on the Catmull-Rom spline. The mechanisms of progressive compression and online recovery of the lightweight vascular structure are further proposed. The experimental results show that our framework has a shorter browser-side response time than existing methods and achieves efficient real-time simulation.
ISSN:2169-3536