A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum
A novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetry. The high number of symmetries (both geometrical...
Main Authors: | Orlando Ragnisco, Danilo Riglioni |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2010-12-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2010.097 |
Similar Items
-
Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials
by: Ernest G. Kalnins, et al.
Published: (2009-01-01) -
Systèmes superintégrables avec spin et intégrales du mouvement d’ordre deux
by: Désilets, Jean-François
Published: (2012) -
Systèmes superintégrables avec spin et intégrales du mouvement d’ordre deux
by: Désilets, Jean-François
Published: (2012) -
Uniform and Non-Uniform Optimum Scalar Quantizers Performances: A Comparative Study
by: Fendy Santoso
Published: (2008-05-01) -
Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems
by: Ernie G. Kalnins, et al.
Published: (2012-06-01)