Tracing the evolution of nuclear forces under the similarity renormalization group

I examine the evolution of nuclear forces under the similarity renormalization group (SRG) using traces of the many-body configuration-space Hamiltonian. While SRG is often said to “soften” the nuclear interaction, I provide numerical examples which paint a complementary point of view: the primary e...

Full description

Bibliographic Details
Main Author: Calvin W. Johnson
Format: Article
Language:English
Published: Elsevier 2017-11-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269317308237
Description
Summary:I examine the evolution of nuclear forces under the similarity renormalization group (SRG) using traces of the many-body configuration-space Hamiltonian. While SRG is often said to “soften” the nuclear interaction, I provide numerical examples which paint a complementary point of view: the primary effect of SRG, using the kinetic energy as the generator of the evolution, is to shift downward the diagonal matrix elements in the model space, while the off-diagonal elements undergo significantly smaller changes. By employing traces, I argue that this is a very natural outcome as one diagonalizes a matrix, and helps one to understand the success of SRG.
ISSN:0370-2693
1873-2445