Heat-Stable Hazelnut Profilin: Molecular Dynamics Simulations and Immunoinformatics Analysis

Heat treatment can modify the allergenic potential, reducing allergenicity in specific proteins. Profilins are one of the important hazelnut allergens; these proteins are considered panallergens due to their high capacity for cross-reactivity with other allergens. In the present work, we evaluated t...

Full description

Bibliographic Details
Main Authors: Haruna L. Barazorda-Ccahuana, Vinicius Theiss-De-Rosso, Diego Ernesto Valencia, Badhin Gómez
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/8/1742
Description
Summary:Heat treatment can modify the allergenic potential, reducing allergenicity in specific proteins. Profilins are one of the important hazelnut allergens; these proteins are considered panallergens due to their high capacity for cross-reactivity with other allergens. In the present work, we evaluated the thermostability of hazelnut profilin, combining molecular dynamics simulation and immunoinformatic techniques. This approach helped us to have reliable results in immunogenicity studies. We modeled Cor a 2 profilin and applied annealing simulation, equilibrium, and production simulation at constant temperatures ranging from 300 to 500 K using Gromacs software. Despite the hazelnut profilins being able to withstand temperatures of up to 400 K, this does not seem to reduce its allergenicity. We have found that profilin subjected to temperatures of 450 and 500 K could generate cross-reactivity with other food allergens. In conclusion, we note a remarkable thermostability of Cor a 2 at 400 K which avoids its structural unfolding.
ISSN:2073-4360