Does Our Universe Prefer Exotic Smoothness?
Various experimentally verified values of physical parameters indicate that the universe evolves close to the topological phase of exotic smoothness structures on <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck"...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/1/98 |
id |
doaj-08c1859fd90343788f177165e0c4f883 |
---|---|
record_format |
Article |
spelling |
doaj-08c1859fd90343788f177165e0c4f8832020-11-25T01:38:38ZengMDPI AGSymmetry2073-89942020-01-011219810.3390/sym12010098sym12010098Does Our Universe Prefer Exotic Smoothness?Torsten Asselmeyer-Maluga0Jerzy Król1Tomasz Miller2German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, GermanyCopernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepańska 1/5, 31-011 Cracow, PolandCopernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepańska 1/5, 31-011 Cracow, PolandVarious experimentally verified values of physical parameters indicate that the universe evolves close to the topological phase of exotic smoothness structures on <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 surface. The structures determine the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> parameter of the Starobinski model, the number of <i>e</i>-folds, the spectral tilt, the scalar-to-tensor ratio and the GUT and electroweak energy scales, as topologically supported quantities. Neglecting exotic <inline-formula> <math display="inline"> <semantics> <msup> <mi>R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 leaves these free parameters undetermined. We present general physical and mathematical reasons for such preference of exotic smoothness. It appears that the spacetime should be formed on open domains of smooth <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mi mathvariant="normal">K</mi> <mn>3</mn> </mrow> <mo>#</mo> <mover> <mrow> <mi>C</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> </mrow> <mo>¯</mo> </mover> </mrow> </semantics> </math> </inline-formula> at extra-large scales possibly exceeding our direct observational capacities. Such potent explanatory power of the formalism is not that surprising since there exist natural physical conditions, which we state explicitly, that allow for the unique determination of a spacetime within the exotic K3.https://www.mdpi.com/2073-8994/12/1/98exotic <i>r</i><sup>4</sup> and cosmologyspace topology changesexotic k3spacetime |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Torsten Asselmeyer-Maluga Jerzy Król Tomasz Miller |
spellingShingle |
Torsten Asselmeyer-Maluga Jerzy Król Tomasz Miller Does Our Universe Prefer Exotic Smoothness? Symmetry exotic <i>r</i><sup>4</sup> and cosmology space topology changes exotic k3 spacetime |
author_facet |
Torsten Asselmeyer-Maluga Jerzy Król Tomasz Miller |
author_sort |
Torsten Asselmeyer-Maluga |
title |
Does Our Universe Prefer Exotic Smoothness? |
title_short |
Does Our Universe Prefer Exotic Smoothness? |
title_full |
Does Our Universe Prefer Exotic Smoothness? |
title_fullStr |
Does Our Universe Prefer Exotic Smoothness? |
title_full_unstemmed |
Does Our Universe Prefer Exotic Smoothness? |
title_sort |
does our universe prefer exotic smoothness? |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-01-01 |
description |
Various experimentally verified values of physical parameters indicate that the universe evolves close to the topological phase of exotic smoothness structures on <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 surface. The structures determine the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> parameter of the Starobinski model, the number of <i>e</i>-folds, the spectral tilt, the scalar-to-tensor ratio and the GUT and electroweak energy scales, as topologically supported quantities. Neglecting exotic <inline-formula> <math display="inline"> <semantics> <msup> <mi>R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 leaves these free parameters undetermined. We present general physical and mathematical reasons for such preference of exotic smoothness. It appears that the spacetime should be formed on open domains of smooth <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mi mathvariant="normal">K</mi> <mn>3</mn> </mrow> <mo>#</mo> <mover> <mrow> <mi>C</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> </mrow> <mo>¯</mo> </mover> </mrow> </semantics> </math> </inline-formula> at extra-large scales possibly exceeding our direct observational capacities. Such potent explanatory power of the formalism is not that surprising since there exist natural physical conditions, which we state explicitly, that allow for the unique determination of a spacetime within the exotic K3. |
topic |
exotic <i>r</i><sup>4</sup> and cosmology space topology changes exotic k3 spacetime |
url |
https://www.mdpi.com/2073-8994/12/1/98 |
work_keys_str_mv |
AT torstenasselmeyermaluga doesouruniversepreferexoticsmoothness AT jerzykrol doesouruniversepreferexoticsmoothness AT tomaszmiller doesouruniversepreferexoticsmoothness |
_version_ |
1725052611211558912 |