Does Our Universe Prefer Exotic Smoothness?

Various experimentally verified values of physical parameters indicate that the universe evolves close to the topological phase of exotic smoothness structures on <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck"...

Full description

Bibliographic Details
Main Authors: Torsten Asselmeyer-Maluga, Jerzy Król, Tomasz Miller
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/1/98
id doaj-08c1859fd90343788f177165e0c4f883
record_format Article
spelling doaj-08c1859fd90343788f177165e0c4f8832020-11-25T01:38:38ZengMDPI AGSymmetry2073-89942020-01-011219810.3390/sym12010098sym12010098Does Our Universe Prefer Exotic Smoothness?Torsten Asselmeyer-Maluga0Jerzy Król1Tomasz Miller2German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, GermanyCopernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepańska 1/5, 31-011 Cracow, PolandCopernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepańska 1/5, 31-011 Cracow, PolandVarious experimentally verified values of physical parameters indicate that the universe evolves close to the topological phase of exotic smoothness structures on <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 surface. The structures determine the <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> parameter of the Starobinski model, the number of <i>e</i>-folds, the spectral tilt, the scalar-to-tensor ratio and the GUT and electroweak energy scales, as topologically supported quantities. Neglecting exotic <inline-formula> <math display="inline"> <semantics> <msup> <mi>R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 leaves these free parameters undetermined. We present general physical and mathematical reasons for such preference of exotic smoothness. It appears that the spacetime should be formed on open domains of smooth <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mi mathvariant="normal">K</mi> <mn>3</mn> </mrow> <mo>#</mo> <mover> <mrow> <mi>C</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> </mrow> <mo>&#175;</mo> </mover> </mrow> </semantics> </math> </inline-formula> at extra-large scales possibly exceeding our direct observational capacities. Such potent explanatory power of the formalism is not that surprising since there exist natural physical conditions, which we state explicitly, that allow for the unique determination of a spacetime within the exotic K3.https://www.mdpi.com/2073-8994/12/1/98exotic <i>r</i><sup>4</sup> and cosmologyspace topology changesexotic k3spacetime
collection DOAJ
language English
format Article
sources DOAJ
author Torsten Asselmeyer-Maluga
Jerzy Król
Tomasz Miller
spellingShingle Torsten Asselmeyer-Maluga
Jerzy Król
Tomasz Miller
Does Our Universe Prefer Exotic Smoothness?
Symmetry
exotic <i>r</i><sup>4</sup> and cosmology
space topology changes
exotic k3
spacetime
author_facet Torsten Asselmeyer-Maluga
Jerzy Król
Tomasz Miller
author_sort Torsten Asselmeyer-Maluga
title Does Our Universe Prefer Exotic Smoothness?
title_short Does Our Universe Prefer Exotic Smoothness?
title_full Does Our Universe Prefer Exotic Smoothness?
title_fullStr Does Our Universe Prefer Exotic Smoothness?
title_full_unstemmed Does Our Universe Prefer Exotic Smoothness?
title_sort does our universe prefer exotic smoothness?
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-01-01
description Various experimentally verified values of physical parameters indicate that the universe evolves close to the topological phase of exotic smoothness structures on <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 surface. The structures determine the <inline-formula> <math display="inline"> <semantics> <mi>&#945;</mi> </semantics> </math> </inline-formula> parameter of the Starobinski model, the number of <i>e</i>-folds, the spectral tilt, the scalar-to-tensor ratio and the GUT and electroweak energy scales, as topologically supported quantities. Neglecting exotic <inline-formula> <math display="inline"> <semantics> <msup> <mi>R</mi> <mn>4</mn> </msup> </semantics> </math> </inline-formula> and K3 leaves these free parameters undetermined. We present general physical and mathematical reasons for such preference of exotic smoothness. It appears that the spacetime should be formed on open domains of smooth <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mi mathvariant="normal">K</mi> <mn>3</mn> </mrow> <mo>#</mo> <mover> <mrow> <mi>C</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> </mrow> <mo>&#175;</mo> </mover> </mrow> </semantics> </math> </inline-formula> at extra-large scales possibly exceeding our direct observational capacities. Such potent explanatory power of the formalism is not that surprising since there exist natural physical conditions, which we state explicitly, that allow for the unique determination of a spacetime within the exotic K3.
topic exotic <i>r</i><sup>4</sup> and cosmology
space topology changes
exotic k3
spacetime
url https://www.mdpi.com/2073-8994/12/1/98
work_keys_str_mv AT torstenasselmeyermaluga doesouruniversepreferexoticsmoothness
AT jerzykrol doesouruniversepreferexoticsmoothness
AT tomaszmiller doesouruniversepreferexoticsmoothness
_version_ 1725052611211558912