A Security Level Classification Method for Power Systems under N-1 Contingency

Security assessment is crucial for the reliable and secure operation of power systems. This paper proposes a security level classification (SLC) method to analyze the security level of power systems both qualitatively and quantitatively. In this SLC method, security levels are graded according to a...

Full description

Bibliographic Details
Main Authors: Zhigang Lu, Liangce He, Dan Zhang, Boxuan Zhao, Jiangfeng Zhang, Hao Zhao
Format: Article
Language:English
Published: MDPI AG 2017-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/10/12/2055
Description
Summary:Security assessment is crucial for the reliable and secure operation of power systems. This paper proposes a security level classification (SLC) method to analyze the security level of power systems both qualitatively and quantitatively. In this SLC method, security levels are graded according to a comprehensive safety index (CSI), which is defined by integrating the system margin index (SMI) and load entropy. The SMI depends on the operating load and the total supply capacity (TSC) under N-1 contingency, and the load entropy reflects the heterogeneity of load distribution calculated from entropy theory. In order to calculate the TSC under N-1 contingency considering both of the computational accuracy and speed, the TSC is converted into an extended conic quadratic programming (ECQP) model. In addition, the load boundary vector (LBV) model is established to obtain the capacity limit of each load bus, and thus detect potential risks of power systems. Finally, two modified practical power systems and the IEEE 118-bus test system are studied to validate the feasibility of the proposed SLC method.
ISSN:1996-1073