Summary: | Nanoparticles are increasingly being developed for in vivo use, from targeted drug delivery to diagnostics, where they have enormous potential, while they are also being used for a variety of applications that can result in environmental exposure for humans. Understanding how specific nanoparticles interact with cells and cell systems is essential to gauge their safety with respect to either clinical or environmental exposure. Zebrafish is being increasingly employed as a model to evaluate nanoparticle biocompatibility. This review describes this model and how it can be used to assess nanoparticle toxicity at multiple levels, including mortality, teratogenicity, immunotoxicity, genotoxicity, as well as alterations in reproduction, behavior and a range of other physiological readouts. This review also provides an overview of studies using this model to assess the toxicity of metal, metal oxide and carbon-based nanoparticles. It is anticipated that this information will inform research aimed at developing biocompatible nanoparticles for a range of uses.
|