Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide

We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003–2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interann...

Full description

Bibliographic Details
Main Authors: J. A. Fisher, D. J. Jacob, M. T. Purdy, M. Kopacz, P. Le Sager, C. Carouge, C. D. Holmes, R. M. Yantosca, R. L. Batchelor, K. Strong, G. S. Diskin, H. E. Fuelberg, J. S. Holloway, E. J. Hyer, W. W. McMillan, J. Warner, D. G. Streets, Q. Zhang, Y. Wang, S. Wu
Format: Article
Language:English
Published: Copernicus Publications 2010-02-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/10/977/2010/acp-10-977-2010.pdf
id doaj-088b48c8152644e3bf2ce268c76a3c15
record_format Article
spelling doaj-088b48c8152644e3bf2ce268c76a3c152020-11-24T21:11:26ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242010-02-01103977996Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxideJ. A. FisherD. J. JacobM. T. PurdyM. KopaczP. Le SagerC. CarougeC. D. HolmesR. M. YantoscaR. L. BatchelorK. StrongG. S. DiskinH. E. FuelbergJ. S. HollowayE. J. HyerW. W. McMillanJ. WarnerD. G. StreetsQ. ZhangY. WangS. WuWe use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003–2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month<sup>−1</sup> for Asian anthropogenic, 9.4 for European anthropogenic, 4.1 for North American anthropogenic, 15 for Russian biomass burning (anomalously large that year), and 23 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Russian biomass burning makes little contribution to mean CO (reflecting the long CO lifetime) but makes a large contribution to CO variability in the form of combustion plumes. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS can successfully observe pollution transport to the Arctic in the mid-troposphere. The 2003–2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Niño Index, suggesting a link between El Niño and Asian pollution transport to the Arctic. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007–2008 La Niña. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Niño conditions. http://www.atmos-chem-phys.net/10/977/2010/acp-10-977-2010.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. A. Fisher
D. J. Jacob
M. T. Purdy
M. Kopacz
P. Le Sager
C. Carouge
C. D. Holmes
R. M. Yantosca
R. L. Batchelor
K. Strong
G. S. Diskin
H. E. Fuelberg
J. S. Holloway
E. J. Hyer
W. W. McMillan
J. Warner
D. G. Streets
Q. Zhang
Y. Wang
S. Wu
spellingShingle J. A. Fisher
D. J. Jacob
M. T. Purdy
M. Kopacz
P. Le Sager
C. Carouge
C. D. Holmes
R. M. Yantosca
R. L. Batchelor
K. Strong
G. S. Diskin
H. E. Fuelberg
J. S. Holloway
E. J. Hyer
W. W. McMillan
J. Warner
D. G. Streets
Q. Zhang
Y. Wang
S. Wu
Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide
Atmospheric Chemistry and Physics
author_facet J. A. Fisher
D. J. Jacob
M. T. Purdy
M. Kopacz
P. Le Sager
C. Carouge
C. D. Holmes
R. M. Yantosca
R. L. Batchelor
K. Strong
G. S. Diskin
H. E. Fuelberg
J. S. Holloway
E. J. Hyer
W. W. McMillan
J. Warner
D. G. Streets
Q. Zhang
Y. Wang
S. Wu
author_sort J. A. Fisher
title Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide
title_short Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide
title_full Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide
title_fullStr Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide
title_full_unstemmed Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide
title_sort source attribution and interannual variability of arctic pollution in spring constrained by aircraft (arctas, arcpac) and satellite (airs) observations of carbon monoxide
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2010-02-01
description We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003–2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month<sup>−1</sup> for Asian anthropogenic, 9.4 for European anthropogenic, 4.1 for North American anthropogenic, 15 for Russian biomass burning (anomalously large that year), and 23 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Russian biomass burning makes little contribution to mean CO (reflecting the long CO lifetime) but makes a large contribution to CO variability in the form of combustion plumes. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS can successfully observe pollution transport to the Arctic in the mid-troposphere. The 2003–2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Niño Index, suggesting a link between El Niño and Asian pollution transport to the Arctic. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007–2008 La Niña. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Niño conditions.
url http://www.atmos-chem-phys.net/10/977/2010/acp-10-977-2010.pdf
work_keys_str_mv AT jafisher sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT djjacob sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT mtpurdy sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT mkopacz sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT plesager sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT ccarouge sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT cdholmes sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT rmyantosca sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT rlbatchelor sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT kstrong sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT gsdiskin sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT hefuelberg sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT jsholloway sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT ejhyer sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT wwmcmillan sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT jwarner sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT dgstreets sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT qzhang sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT ywang sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
AT swu sourceattributionandinterannualvariabilityofarcticpollutioninspringconstrainedbyaircraftarctasarcpacandsatelliteairsobservationsofcarbonmonoxide
_version_ 1716753411562536960