Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transc...

Full description

Bibliographic Details
Main Authors: Katie L Lannan, Julie eSahler, Nina eKim, Sherry L Spinelli, Sanjay B Maggirwar, Olivier eGARRAUD, Fabrice eCOGNASSE, Neil eBlumberg, Richard P Phipps
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-02-01
Series:Frontiers in Immunology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fimmu.2015.00048/full
Description
Summary:Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
ISSN:1664-3224