The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations

We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Publ...

Full description

Bibliographic Details
Main Authors: M. Radžiūnas, F. Ivanauskas
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 1998-12-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/10002
id doaj-08718c9d38cf4089b0ff0b33671c0988
record_format Article
spelling doaj-08718c9d38cf4089b0ff0b33671c09882021-07-02T11:22:48ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35101998-12-013110.3846/13926292.1998.9637101The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equationsM. Radžiūnas0F. Ivanauskas1Weierstrass Institute for Applied Analysis and Stochastics , Mohrenstrasse 39, Berlin, D‐10117, GermanyFaculty of Mathematics , Vilnius University , Naugarduko 24, Vilnius, LT‐2600, Lithuania We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/10002-
collection DOAJ
language English
format Article
sources DOAJ
author M. Radžiūnas
F. Ivanauskas
spellingShingle M. Radžiūnas
F. Ivanauskas
The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
Mathematical Modelling and Analysis
-
author_facet M. Radžiūnas
F. Ivanauskas
author_sort M. Radžiūnas
title The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_short The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_full The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_fullStr The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_full_unstemmed The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_sort stability conditions of finite difference schemes for schrödinger, kuramoto‐tszuki and heat equations
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 1998-12-01
description We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published Online: 14 Oct 2010
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/10002
work_keys_str_mv AT mradziunas thestabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
AT fivanauskas thestabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
AT mradziunas stabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
AT fivanauskas stabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
_version_ 1721331184713072640