Viscous effects on the dynamical evolution of QCD matter during the first-order confinement phase transition in heavy-ion collisions
We investigate viscous effects on the dynamical evolution of QCD matter during the first-order phase transition, which may happen in heavy-ion collisions. We first obtain the first-order phase transition line in the QCD phase diagram under the Gibbs condition by using the MIT bag model and the hadro...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-07-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269318303940 |
Summary: | We investigate viscous effects on the dynamical evolution of QCD matter during the first-order phase transition, which may happen in heavy-ion collisions. We first obtain the first-order phase transition line in the QCD phase diagram under the Gibbs condition by using the MIT bag model and the hadron resonance gas model for the equation of state of partons and hadrons. The viscous pressure, which corresponds to the friction in the energy balance, is then derived from the energy and net baryon number conservation during the phase transition. We find that the viscous pressure relates to the thermodynamic change of the two-phase state and thus affects the timescale of the phase transition. Numerical results are presented for demonstrations. |
---|---|
ISSN: | 0370-2693 |