The Great Wall: Urca Cooling Layers in the Accreted NS Crust

Accreting neutron stars host a number of astronomical observables which can be used to infer the properties of the underlying dense matter. These observables are sensitive to the heating and cooling processes taking place in the accreted neutron star (NS) crust. Within the past few years it has beco...

Full description

Bibliographic Details
Main Author: Meisel Zach
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201817804004
Description
Summary:Accreting neutron stars host a number of astronomical observables which can be used to infer the properties of the underlying dense matter. These observables are sensitive to the heating and cooling processes taking place in the accreted neutron star (NS) crust. Within the past few years it has become apparent that electron-capture/beta-decay (urca) cycles can operate within the NS crust at high temperatures. Layers of nuclei undergoing urca cycling can create a thermal barrier, or Great Wall, between heating occurring deep in the crust and the regions above the urca layers. This paper briefly reviews the urca process and the implications for observables from accreting neutron stars.
ISSN:2100-014X