ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment
ExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover, will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to travel kilometres over the Martian surfa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-08-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3/177/2014/isprsarchives-XL-3-177-2014.pdf |
id |
doaj-086e8c6f974a4f408d93e0b4f4ffb724 |
---|---|
record_format |
Article |
spelling |
doaj-086e8c6f974a4f408d93e0b4f4ffb7242020-11-25T00:45:00ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342014-08-01XL-317718210.5194/isprsarchives-XL-3-177-2014ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy AssessmentD. Li0R Li1A. Yilmaz2Photogrammetric Computer Vision Laboratory, The Ohio State University, USADept. of Civil, Environ. and Geodetic Eng., The Ohio State University, USAPhotogrammetric Computer Vision Laboratory, The Ohio State University, USAExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover, will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to travel kilometres over the Martian surface, high-precision rover localization and topographic mapping will be critical for traverse path planning and safe planetary surface operations. For such purposes, the ExoMars rover Panoramic Camera system (PanCam) will acquire images that are processed into an imagery network providing vision information for photogrammetric algorithms to localize the rover and generate 3-D mapping products. Since the design of the ExoMars PanCam will influence localization and mapping accuracy, quantitative error analysis of the PanCam design will improve scientists’ awareness of the achievable level of accuracy, and enable the PanCam design team to optimize its design to achieve the highest possible level of localization and mapping accuracy. Based on photogrammetric principles and uncertainty propagation theory, we have developed a method to theoretically analyze how mapping and localization accuracy would be affected by various factors, such as length of stereo hard-baseline, focal length, and pixel size, etc.http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3/177/2014/isprsarchives-XL-3-177-2014.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
D. Li R Li A. Yilmaz |
spellingShingle |
D. Li R Li A. Yilmaz ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
D. Li R Li A. Yilmaz |
author_sort |
D. Li |
title |
ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment |
title_short |
ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment |
title_full |
ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment |
title_fullStr |
ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment |
title_full_unstemmed |
ESA ExoMars: Pre-launch PanCam Geometric Modeling and Accuracy Assessment |
title_sort |
esa exomars: pre-launch pancam geometric modeling and accuracy assessment |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2014-08-01 |
description |
ExoMars is the flagship mission of the European Space Agency (ESA) Aurora Programme. The mobile scientific platform, or rover,
will carry a drill and a suite of instruments dedicated to exobiology and geochemistry research. As the ExoMars rover is designed to
travel kilometres over the Martian surface, high-precision rover localization and topographic mapping will be critical for traverse
path planning and safe planetary surface operations. For such purposes, the ExoMars rover Panoramic Camera system (PanCam) will
acquire images that are processed into an imagery network providing vision information for photogrammetric algorithms to localize
the rover and generate 3-D mapping products. Since the design of the ExoMars PanCam will influence localization and mapping
accuracy, quantitative error analysis of the PanCam design will improve scientists’ awareness of the achievable level of accuracy,
and enable the PanCam design team to optimize its design to achieve the highest possible level of localization and mapping
accuracy. Based on photogrammetric principles and uncertainty propagation theory, we have developed a method to theoretically
analyze how mapping and localization accuracy would be affected by various factors, such as length of stereo hard-baseline, focal
length, and pixel size, etc. |
url |
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3/177/2014/isprsarchives-XL-3-177-2014.pdf |
work_keys_str_mv |
AT dli esaexomarsprelaunchpancamgeometricmodelingandaccuracyassessment AT rli esaexomarsprelaunchpancamgeometricmodelingandaccuracyassessment AT ayilmaz esaexomarsprelaunchpancamgeometricmodelingandaccuracyassessment |
_version_ |
1725271958151495680 |