Weighted inequalities for Hilbert transforms and multiplicators of Fourier transforms

<p/> <p>As is well known, invariant operators with a shift can be bounded from <inline-formula><graphic file="1029-242X-1997-562605-i1.gif"/></inline-formula> into <inline-formula><graphic file="1029-242X-1997-562605-i2.gif"/></inline-...

Full description

Bibliographic Details
Main Authors: Kokilashvili V, Meskhi A
Format: Article
Language:English
Published: SpringerOpen 1997-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/1/562605
Description
Summary:<p/> <p>As is well known, invariant operators with a shift can be bounded from <inline-formula><graphic file="1029-242X-1997-562605-i1.gif"/></inline-formula> into <inline-formula><graphic file="1029-242X-1997-562605-i2.gif"/></inline-formula> only if <inline-formula><graphic file="1029-242X-1997-562605-i3.gif"/></inline-formula>. We show that the case <inline-formula><graphic file="1029-242X-1997-562605-i4.gif"/></inline-formula> might also hold for weighted spaces. We derive the sufficient conditions for the validity of strong (weak) <inline-formula><graphic file="1029-242X-1997-562605-i5.gif"/></inline-formula> type inequalities for the Hilbert transform when <inline-formula><graphic file="1029-242X-1997-562605-i6.gif"/></inline-formula>.</p> <p>The examples of couple of weights which guarantee the fulfillness of two-weighted strong (weak) type inequalities for singular integrals are presented. The method of proof of the main results allows us to generalize the results of this paper to the singular integrals which are defined on homogeneous groups.</p> <p>The Fourier multiplier theorem is also proved.</p>
ISSN:1025-5834
1029-242X