Parameter dependence for existence, nonexistence and multiplicity of nontrivial solutions for an Atıcı–Eloe fractional difference Lidstone BVP
Dependence on a parameter $\lambda$ are established for existence, nonexistence and multiplicity results for nontrivial solutions to a nonlinear Atıcı–Eloe fractional difference equation $$\Delta^{\nu}y(t-2)-\beta \Delta^{\nu-2}y(t-1) = \lambda f(t+\nu-1,y(t+\nu-1)),$$ with $3 <\nu\leq 4$ a real...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2017-05-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5651 |
Summary: | Dependence on a parameter $\lambda$ are established for existence, nonexistence and multiplicity results for nontrivial solutions to a nonlinear Atıcı–Eloe fractional difference equation
$$\Delta^{\nu}y(t-2)-\beta \Delta^{\nu-2}y(t-1) = \lambda f(t+\nu-1,y(t+\nu-1)),$$
with $3 <\nu\leq 4$ a real number, under Lidstone boundary conditions. In particular, the uniqueness of solutions and the continuous dependence of the unique solution on the parameter $\lambda$ are also studied. |
---|---|
ISSN: | 1417-3875 1417-3875 |