α-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins
Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions as adjuvant strategy for preventing such conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested to have a po...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PAGEPress Publications
2016-11-01
|
Series: | European Journal of Translational Myology |
Subjects: | |
Online Access: | http://www.pagepressjournals.org/index.php/bam/article/view/6033 |
Summary: | Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions as adjuvant strategy for preventing such conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested to have a positive impact on muscle diseases. We recently demonstrated that the dietary n3-fatty acid, alpha-linolenic acid (ALA), exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we investigate here on the expression level of the anti- and pro-apototic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of TNF. The results demonstrated that ALA protective effect on C2C12 myoblasts was associated to an increased Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescue Bcl-2 expression and decrease Bax expression both affected in an opposite way by TNF treatment. This effect was associated with a decrease in caspase-3 activity by ALA. TNF is a major pro-inflammatory cytokine that is expressed in damaged skeletal muscle, therefore, counteract inflammatory signals in the muscle microenvironment represents a critical strategy to ameliorate skeletal muscle pathologies |
---|---|
ISSN: | 2037-7452 2037-7460 |