Identification of genes involved in the evolution of human intelligence through combination of inter-species and intra-species genetic variations

Understanding the evolution of human intelligence is an important undertaking in the science of human genetics. A great deal of biological research has been conducted to search for genes which are related to the significant increase in human brain volume and cerebral cortex complexity during hominid...

Full description

Bibliographic Details
Main Authors: Mengjie Li, Wenting Zhang, Xiaoyi Zhou
Format: Article
Language:English
Published: PeerJ Inc. 2020-04-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/8912.pdf
Description
Summary:Understanding the evolution of human intelligence is an important undertaking in the science of human genetics. A great deal of biological research has been conducted to search for genes which are related to the significant increase in human brain volume and cerebral cortex complexity during hominid evolution. However, genetic changes affecting intelligence in hominid evolution have remained elusive. We supposed that a subset of intelligence-related genes, which harbored intra-species variations in human populations, may also be evolution-related genes which harbored inter-species variations between humans (Homo sapiens) and great apes (including Pan troglodytes and Pongo abelii). Here we combined inter-species and intra-species genetic variations to discover genes involved in the evolution of human intelligence. Information was collected from published GWAS works on intelligence and a total of 549 genes located within the intelligence-associated loci were identified. The intelligence-related genes containing human-specific variations were detected based on the latest high-quality genome assemblies of three human’s closest species. Finally, we identified 40 strong candidates involved in human intelligence evolution. Expression analysis using RNA-Seq data revealed that most of the genes displayed a relatively high expression in the cerebral cortex. For these genes, there is a distinct expression pattern between humans and other species, especially in neocortex tissues. Our work provided a list of strong candidates for the evolution of human intelligence, and also implied that some intelligence-related genes may undergo inter-species evolution and contain intra-species variation.
ISSN:2167-8359