Analytical modeling of multi-layered printed circuit board using multi-stacked via clusters as component heat spreader

In order to help the electronic designer to early determine the limits of the power dissipation of electronic component, an analytical model was established to allow a fast insight of relevant design parameters of a multi-layered electronic board constitution. The proposed steady-state a...

Full description

Bibliographic Details
Main Authors: Monier-Vinard Eric, Laraqi Najib, Dia Cheikh Tidiane, Nguyen Minh-Nhat, Bissuel Valentin
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2016-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361400143M.pdf
Description
Summary:In order to help the electronic designer to early determine the limits of the power dissipation of electronic component, an analytical model was established to allow a fast insight of relevant design parameters of a multi-layered electronic board constitution. The proposed steady-state approach based on Fourier series method promotes a practical solution to quickly investigate the potential gain of multi-layered thermal via clusters. Generally, it has been shown a good agreement between the results obtained by the proposed analytical model and those given by electronics cooling software widely used in industry. Some results highlight the fact that the conventional practices for Printed Circuit Board modeling can be dramatically underestimate source temperatures, in particular with smaller sources. Moreover, the analytic solution could be applied to optimize the heat spreading in the board structure with a local modification of the effective thermal conductivity layers.
ISSN:0354-9836
2334-7163